1030. Travel Plan (30)
2018-06-18 03:51:44来源:未知 阅读 ()
A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.
Inpzut Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (<=500) is the number of cities (and hence the cities are numbered from 0 to N-1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:
City1 City2 Distance Cost
where the numbers are all integers no more than 500, and are separated by a space.
Output Specification:
For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.
Sample Input
4 5 0 3 0 1 1 20 1 3 2 30 0 3 4 10 0 2 2 20 2 3 1 20
Sample Output
0 2 3 3 40
//Dijkstra
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn = 510; const int INF = 1000000000; //城市数,道路数,起点,终点 //距离矩阵,花费矩阵 //最短距离,花销最小,前驱数组:记录走过的最短距离路径 int n,m,st,ed; int G[maxn][maxn],cost[maxn][maxn]; int d[maxn],c[maxn],pre[maxn]; bool vis[maxn] = {false}; void Dijkstra(int s){ fill(d,d+maxn,INF); fill(c,c+maxn,INF); d[s] = 0; c[s] = 0; for(int i = 0; i < n; i++){ int u = -1, MIN = INF; for(int j = 0; j < n; j++){ if(vis[j] == false && d[j] < MIN){ u = j; MIN = d[j]; } } if(u == -1) return; vis[u] = true; for(int v = 0; v < n; v++){ if(vis[v] == false && G[u][v] != INF){ if(d[v] > d[u] + G[u][v]){ d[v] = d[u] + G[u][v]; c[v] = c[u] + cost[u][v]; pre[v] = u; }else if(d[v] == d[u] + G[u][v]){ if(c[v] > c[u] + cost[u][v]){ c[v] = c[u] + cost[u][v]; pre[v] = u; } } } } } } void DFS(int v){ if(v == st){ printf("%d ",v); return; } DFS(pre[v]); printf("%d ",v); } int main(){ scanf("%d%d%d%d",&n,&m,&st,&ed); int u,v; fill(G[0],G[0]+maxn*maxn,INF); for(int i = 0; i < m; i++){ scanf("%d%d",&u,&v); scanf("%d%d",&G[u][v],&cost[u][v]); G[v][u] = G[u][v]; cost[v][u] = cost[u][v]; } Dijkstra(st); DFS(ed); printf("%d %d\n",d[ed],c[ed]); return 0; }
#include<cstdio> #include<algorithm> //fill 和 memset赋值 #include<vector> using namespace std; //这个不能少 const int maxv = 510; const int INF = 1000000000; int n,m,st,ed;// 城市数,道路数,起点,终点 int G[maxv][maxv],cost[maxv][maxv]; //距离矩阵,花费矩阵 int d[maxv],minCost = INF;//记录最短路径,最短路径(初始值最大) vector<int> pre[maxv]; //记录最短路径前驱 vector<int> path,tempPath; //临时路径,最优路径 bool vis[maxv] = {false}; void Dijkstra(int s){ fill(d,d+maxv,INF); d[s] = 0; for(int i = 0; i < n; i++){ int u = -1, min = INF; for(int j = 0; j < n; j++){ if(vis[j] == false && d[j] < min){ u = j; min = d[j]; } } if(u == -1) return; vis[u] = true; for(int v = 0; v < n; v++){ if(vis[v] == false && G[u][v] != INF){ if(d[v] > d[u] + G[u][v]){ d[v] = d[u] + G[u][v]; pre[v].clear(); pre[v].push_back(u); }else if(d[v] = d[u] + G[u][v]){ pre[v].push_back(u); } } } } } void DFS(int v){ if(v == st){ //判断其相等 tempPath.push_back(v); //加入到临时路径来比较 int tempCost = 0; for(int i = tempPath.size()-1; i > 0; i--){ int id = tempPath[i],idNext = tempPath[i-1]; tempCost += cost[id][idNext]; } if(tempCost < minCost){ minCost = tempCost; path = tempPath; } tempPath.pop_back(); return; } tempPath.push_back(v); for(int i = 0; i < pre[v].size(); i++){ DFS(pre[v][i]); } tempPath.pop_back(); } int main(){ scanf("%d%d%d%d",&n,&m,&st,&ed); fill(G[0],G[0]+maxv*maxv,INF); fill(cost[0],cost[0]+maxv*maxv,INF); int u,v; for(int i = 0; i < m; i++){ scanf("%d%d",&u,&v); scanf("%d%d",&G[u][v],&cost[u][v]); G[v][u] = G[u][v]; cost[v][u] = cost[u][v]; } Dijkstra(st); DFS(ed); for( i = path.size()-1; i >= 0; i--){ //c-free里这里i不用再次定义,在PAT中这里还需要加int printf("%d ",path[i]); //最优路径顺序已经存储在path里 } printf("%d %d",d[ed],minCost); //minCost是变量 return 0; }
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
- A.Activity planning 2018-12-04
- BZOJ1576: [Usaco2009 Jan]安全路经Travel(最短路 并查集) 2018-09-10
- HDU4405 Aeroplane chess(期望dp) 2018-08-26
- UVALive 4987---Evacuation Plan(区间DP) 2018-06-17
- Travelling HDU - 3001 2018-06-17
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash