UVA 11582 Colossal Fibonacci Numbers! 大斐波…
2018-06-17 23:35:47来源:未知 阅读 ()
大致题意:输入两个非负整数a,b和正整数n。计算f(a^b)%n。其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模。
一开始看到大斐波那契数,就想到了矩阵快速幂,输出等了几秒钟才输出完,肯定会超时。因为所有计算都是要取模的,设F[i]=f[i] mod n。F[0]=F[1]=1。只要出现F[i]=F[i+1]=1,那么整个序列就会重复。例如n=3,则序列为1,1,2,0,2,2,1,0,1,1……第九项和第十项都等于1,所以之后的序列都会重复。
至于多久会重复一次,这个没法直接看出来。我的程序是一直判断下去知道有相邻地两个1,这样有点冒险,不过没有超时。后来看了下刘汝佳的书,书上这样说的:因为余数最多n种,所以最多n2项就会重复。这是一个结论吗,我没看懂,先记着吧。
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> using namespace std; const int maxn=1000000+5; typedef unsigned long long ull; int modnum[maxn]; int Mod; int powermod(ull a,ull b,int c) { ull ans=1; a%=c; while(b) { if(b&1) ans=ans*a%c; a=a*a%c; b=b>>1; } return ans; } int main() { //freopen("in.txt","r",stdin); int t; ull a,b; scanf("%d",&t); while(t--) { scanf("%llu%llu%d",&a,&b,&Mod); if(Mod==1 || a==0) { printf("0\n"); continue; } modnum[0]=modnum[1]=1; int p=1; for(int i=2;;i++) { modnum[i]=(modnum[i-1]+modnum[i-2])%Mod; if(modnum[i]==1 && modnum[i-1]==1) { p=i-1; break; } } printf("%d\n",modnum[powermod(a,b,p)-1]); } return 0; }
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
- [Uva1637][DFS][记忆化] 纸牌游戏 Double Patience 2020-03-06
- Prime Time UVA - 10200(精度处理,素数判定) 2019-08-16
- J - Fire! UVA - 11624 2018-09-01
- uva11768 Lattice Point or Not 2018-08-14
- UVALive - 6434 (贪心) 2018-07-28
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash