HDU 3078 Network

2018-06-17 21:37:32来源:未知 阅读 ()

新老客户大回馈,云服务器低至5折

Network

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1495    Accepted Submission(s): 670


Problem Description
The ALPC company is now working on his own network system, which is connecting all N ALPC department. To economize on spending, the backbone network has only one router for each department, and N-1 optical fiber in total to connect all routers.
The usual way to measure connecting speed is lag, or network latency, referring the time taken for a sent packet of data to be received at the other end.
Now the network is on trial, and new photonic crystal fibers designed by ALPC42 is trying out, the lag on fibers can be ignored. That means, lag happened when message transport through the router. ALPC42 is trying to change routers to make the network faster, now he want to know that, which router, in any exactly time, between any pair of nodes, the K-th high latency is. He needs your help.
 

 

Input
There are only one test case in input file.
Your program is able to get the information of N routers and N-1 fiber connections from input, and Q questions for two condition: 1. For some reason, the latency of one router changed. 2. Querying the K-th longest lag router between two routers.
For each data case, two integers N and Q for first line. 0<=N<=80000, 0<=Q<=30000.
Then n integers in second line refer to the latency of each router in the very beginning.
Then N-1 lines followed, contains two integers x and y for each, telling there is a fiber connect router x and router y.
Then q lines followed to describe questions, three numbers k, a, b for each line. If k=0, Telling the latency of router a, Ta changed to b; if k>0, asking the latency of the k-th longest lag router between a and b (include router a and b). 0<=b<100000000.
A blank line follows after each case.
 

 

Output
For each question k>0, print a line to answer the latency time. Once there are less than k routers in the way, print "invalid request!" instead.
 

 

Sample Input
5 5 5 1 2 3 4 3 1 2 1 4 3 5 3 2 4 5 0 1 2 2 2 3 2 1 4 3 3 5
 

 

Sample Output
3 2 2 invalid request!
 

 

Source
2009 Multi-University Training Contest 17 - Host by NUDT
 

 

Recommend
lcy   |   We have carefully selected several similar problems for you:  3071 3070 3072 3073 3074 
 
 
 
题目大意:
给出一棵有n个节点的无根树
给出每个节点的权值
有m次询问
每次三个数x,y,z
若x==0 将y位置的数修改为z
若x!=0 询问y节点到z节点的权值总和
 
这道题数据规模比较小&&HDOJ的评测机速度还算快,求出LCA打暴力其实可以水过
当然如果你不介意的话可以用树链剖分+线段树+平衡树&&二分
 
  1 #include<cstdio>
  2 #include<cstring>
  3 #include<algorithm>
  4 using namespace std;
  5 const int MAXN=2*1e5+10;
  6 inline int read()
  7 {
  8     char c=getchar();int x=0,f=1;
  9     while(c<'0'||c>'9')    {if(c=='-')    f=-1;c=getchar();}
 10     while(c>='0'&&c<='9')    x=x*10+c-48,c=getchar();return x*f;
 11 }
 12 int n,m,S=1; 
 13 int f[MAXN][21],deep[MAXN],g[MAXN];
 14 struct node
 15 {
 16     int u,v,w,nxt;
 17 }edge[MAXN];
 18 int head[MAXN];
 19 int num=1;
 20 int a[MAXN];
 21 inline void add_edge(int x,int y,int z)
 22 {
 23     edge[num].u=x;
 24     edge[num].v=y;
 25     edge[num].w=z;
 26     edge[num].nxt=head[x];
 27     head[x]=num++;
 28 }
 29 void dfs(int now)
 30 {
 31     for(int i=head[now];i!=-1;i=edge[i].nxt)
 32         if(deep[edge[i].v]==0)
 33         {
 34             deep[edge[i].v]=deep[now]+1;
 35             f[edge[i].v][0]=now;
 36             g[edge[i].v]=g[now]+edge[i].w;
 37             dfs(edge[i].v);
 38         }
 39             
 40 }
 41 inline void pre()
 42 {
 43     for(int i=1;i<=19;i++)
 44         for(int j=1;j<=n;j++)
 45             f[j][i]=f[f[j][i-1]][i-1];
 46 }
 47 inline int LCA(int x,int y)
 48 {
 49     if(deep[x]<deep[y])    swap(x,y);
 50     for(int i=19;i>=0;i--)
 51         if(deep[f[x][i]]>=deep[y])
 52             x=f[x][i];
 53     if(x==y)    return x;
 54 
 55     for(int i=19;i>=0;i--)
 56         if(f[x][i]!=f[y][i])
 57             x=f[x][i],y=f[y][i];
 58     return f[x][0];
 59 }
 60 int tot=0;
 61 int ans[MAXN];
 62 int comp(const int &a,const int &b)
 63 {
 64     return a>b;
 65 }
 66 int work(int k,int x,int y)
 67 {
 68     tot=0;
 69     int lca=LCA(x,y);
 70     while(x!=lca)    ans[++tot]=a[x],x=f[x][0];ans[++tot]=a[x];
 71     while(y!=lca)    ans[++tot]=a[y],y=f[y][0];
 72     sort(ans+1,ans+tot+1,comp);
 73     if(k>tot)    printf("invalid request!\n");
 74     else         printf("%d\n",ans[k]);
 75 }
 76 int main()
 77 {
 78     int T=1;
 79     while(T--)
 80     {
 81         n=read();m=read();
 82         for(int i=1;i<=n;i++)    a[i]=read();
 83         memset(head,-1,sizeof(head));num=1;
 84         memset(f,0,sizeof(f));
 85         memset(deep,0,sizeof(deep));
 86         for(int i=1;i<=n-1;i++)
 87         {
 88             int x=read(),y=read();
 89             add_edge(x,y,0);
 90             add_edge(y,x,0);
 91         }
 92         deep[S]=1;
 93         dfs(S);pre();
 94         while(m--)
 95         {
 96             
 97             int x=read(),y=read(),z=read();
 98             if(x==0)    a[y]=z;
 99             else work(x,y,z);
100         }    
101     }
102     
103     return 0;
104 }

 

 
 

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:计蒜客 | 拓扑排序 | 虎威山上的分配

下一篇:乘法逆元(欧拉函数,欧拉定理,质数筛法)