如何用Python制作优美且功能强大的数据可视化图…

2019-07-24 09:16:32来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

第一个案例

首先开始来绘制你的第一个图表

from pyecharts import Bar

'''
遇到不懂的问题?Python学习交流群:1004391443满足你的需求,资料都已经上传群文件,可以自行下载!
'''


bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
# bar.print_echarts_options() # 该行只为了打印配置项,方便调试时使用
bar.render()    # 生成本地 HTML 文件

add() 
主要方法,用于添加图表的数据和设置各种配置项 
print_echarts_options() 
打印输出图表的所有配置项 
render() 
默认将会在根目录下生成一个 render.html 的文件,支持 path 参数,设置文件保存位置,如 render(r”e:\my_first_chart.html”),文件用浏览器打开。 
Note: 可以按右边的下载按钮将图片下载到本地,如果想要提供更多实用工具按钮,请在 add() 中设置 is_more_utils 为 True

from pyecharts import Bar

bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", 
        ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90],
        is_more_utils=True)
bar.render()

使用主题

from pyecharts import Bar

bar = Bar("我的第一个图表", "这里是副标题")
bar.use_theme('dark')
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
bar.render()

 

 

使用 pyecharts-snapshot 插件

如果想直接将图片保存为 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用该插件请确保你的系统上已经安装了 Nodejs 环境。

安装phantomjs 
$ npm install -g phantomjs-prebuilt

安装pyecharts-snapshot 
$ pip install pyecharts-snapshot 
调用 render 方法 bar.render(path=’snapshot.png’) 文件结尾可以为 svg/jpeg/png/pdf/gif。 
请注意,svg 文件需要你在初始化 bar 的时候设置 renderer=’svg’。

多次显示图表

from pyecharts import Bar, Line
from pyecharts.engine import create_default_environment

bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])

line = Line("我的第一个图表", "这里是副标题")
line.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])

env = create_default_environment("html")
# 为渲染创建一个默认配置环境
# create_default_environment(filet_ype)
# file_type: 'html', 'svg', 'png', 'jpeg', 'gif' or 'pdf'

env.render_chart_to_file(bar, path='bar.html')
env.render_chart_to_file(line, path='line.html')

相比第一个例子,该代码只是使用同一个引擎对象,减少了部分重复操作,速度有所提高。

如果使用的是 Numpy 或者 Pandas,可以参考这个示例

这里写图片描述
这里写图片描述

这里写图片描述
这里写图片描述

 


原文链接:https://www.cnblogs.com/Pythonmiss/p/11151387.html
如有疑问请与原作者联系

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:知乎Python后端面试总结

下一篇:python零基础系统学习教程之Python 变量类型