【Python基础】迭代器、生成器、面向过程编程
2019-05-13 07:17:09来源:博客园 阅读 ()
迭代器和生成器
迭代器
一 、迭代的概念
#迭代器即迭代的工具,那什么是迭代呢? #迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值 while True: #只是单纯地重复,因而不是迭代 print('===>') l=[1,2,3] count=0 while count < len(l): #迭代 print(l[count]) count+=1
二、什么是迭代器协议
1、迭代器协议指:对象必须提供一个 next 方法,执行该方法要么返回迭代中的下一项,要么引起一个StopIteration异常,以终止迭代(只能往后不能往前退)
2、可迭代对象:实现了迭代器协议的对象(如何实现:对象内部定义了一个__iter__() 方法)
3、协议是一种约定,可迭代对象实现了迭代器协议,Python内部工具(如for循环,sum,min,max等)使用迭代器协议访问对象。
三、为何要有迭代器?什么是可迭代对象?什么是迭代器对象?
#1、为何要有迭代器? 对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文件等类型是没有索引的,
若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器 #2、什么是可迭代对象? 可迭代对象指的是内置有 __iter__ 方法的对象,即 obj.__iter__,如下 'hello'.__iter__ (1,2,3).__iter__ [1,2,3].__iter__ {'a':1}.__iter__ {'a','b'}.__iter__ open('a.txt').__iter__ #3、什么是迭代器对象? 可迭代对象执行obj.__iter__()得到的结果就是迭代器对象 而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象 文件类型是迭代器对象 open('a.txt').__iter__() open('a.txt').__next__() #4、注意: 迭代器对象(obj.__iter__())一定是可迭代对象,而可迭代对象("hello")不一定是迭代器对象
四、 迭代器对象的使用
dic={'a':1,'b':2,'c':3} iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__又有__next__,但是:迭代器.__iter__()得到的仍然是迭代器本身 iter_dic.__iter__() is iter_dic #True print(iter_dic.__next__()) #等同于next(iter_dic) print(iter_dic.__next__()) #等同于next(iter_dic) print(iter_dic.__next__()) #等同于next(iter_dic) # print(iter_dic.__next__()) #抛出异常StopIteration,或者说结束标志
补充:print(next(iter_dic)) # next()<===>iter_dic.__next__()
#有了迭代器,我们就可以不依赖索引迭代取值了 #下面是用一个while循环 模拟 for循环 li = [1,2,3,4,5] # for i in li: # print(i) """模拟for循环过程""" iter_li = li.__iter__() while True: try: print(iter_li.__next__()) except StopIteration: # print("迭代完毕,循环结束!") break #这么写太丑陋了,需要我们自己捕捉异常,控制next,python这么牛逼,能不能帮我解决呢?能,请看for循环
五、 for循环
#基于for循环,我们可以完全不再依赖索引去取值了 dic={'a':1,'b':2,'c':3} for k in dic: print(dic[k]) #for循环的工作原理 #1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic #2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码 #3: 重复过程2,直到捕捉到异常StopIteration,结束循环
六、 迭代器的优缺点
#优点: - 提供一种统一的、不依赖于索引的迭代方式 - 惰性计算,节省内存 #缺点: - 无法获取长度(只有在next完毕才知道到底有几个值) - 一次性的,只能往后走,不能往前退
生成器
一、什么是生成器
生成器可以理解为一种数据类型,这种数据类型自动实现迭代器协议(其他的数据类型需要调用自己的__iter__() 方法,所以生成器就是可迭代对象)
二、生成器在Python中的表现形式
1、生成器函数:常规函数定义,但是使用yield语句 而不是return 语句返回函数结果,yield语句一次返回一个结果(def 函数只能有一个return 但是可以有多个yield),
在每个结果中间挂起函数状态,以便下次从它离开的地方继续执行
#只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码 def func(): print('====>first') yield 1 print('====>second') yield 2 print('====>third') yield 3 print('====>end') g=func() print(g) #<generator object func at 0x0000000002184360>
2、生成器表达式:类似于列表推导,但是生成器返回按需产生结果的一个对象,而不是一次性构建一个结果列表(优点:可以节省内存)
补充:三元表达式和列表解析
# 三元表达式 name = "xiong" # name = "wang" res = "帅哥" if name == "xiong" else "sb" print(res) li1 = ["鸡蛋%s"%i for i in range(10)] #二元列表解析 li2 = ["鸡蛋%s"%i for i in range(10) if i>5] #三元列表解析 print(li1) print(li2)
li3 = ("鸡蛋%s"%i for i in range(10) if i>5) #生成器表达式 print(li3) #<generator object <genexpr> at 0x000002230C8F1048> print(li3.__next__()) print(li3.__next__())
总结:
1、把列表解析的 [] 换成 () 得到的就是生成器表达式
2、列表解析和生成器表达式都是一种便利的编程方式,只不过生成器表达式更省内存
3、Python不但使用迭代器协议让for循环变得更加通用,而且大部分内置函数也使用迭代器协议访问对象。
例如:sum() max() min() sorted()
# 可以直接使用sum求和 ss1 = sum(x**2 for x in range(10)) print(ss1) # 不需要多此一举先构造一个列表 ss2 = sum([x**2 for x in range(10)]) print(ss2)
三、为何使用生成器及生成器的优点
Python使用生成器对延迟操作提供了支持。所谓延迟操作,是指在需要的时候才产生结果,而不是立即产生结果存在内存中。这样生成器节省了内存
生成器总结:
1、是可迭代对象
2、实现延迟操作,省内存
3、生成器本质和其他数据类型一样,都是实现了迭代器协议,只不过生成器附加了延迟操作省内存的特点,而其他可迭代对象没有这个优点
四、练习
1、自定义函数模拟range(1,7,2)
2、模拟管道,实现功能:tail -f access.log | grep '404'
#题目一: def my_range(start,stop,step=1): while start < stop: yield start start+=step #执行函数得到生成器,本质就是迭代器 obj=my_range(1,7,2) #1 3 5 print(next(obj)) print(next(obj)) print(next(obj)) print(next(obj)) #StopIteration #应用于for循环 for i in my_range(1,7,2): print(i) #题目二 import time def tail(filepath): with open(filepath,'rb') as f: f.seek(0,2) while True: line=f.readline() if line: yield line else: time.sleep(0.2) def grep(pattern,lines): for line in lines: line=line.decode('utf-8') if pattern in line: yield line for line in grep('404',tail('access.log')): print(line,end='') #测试 with open('access.log','a',encoding='utf-8') as f: f.write('出错啦404\n')
原文链接:https://www.cnblogs.com/XJT2018/p/10855233.html
如有疑问请与原作者联系
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
- python3基础之“术语表(2)” 2019-08-13
- python3 之 字符串编码小结(Unicode、utf-8、gbk、gb2312等 2019-08-13
- Python3安装impala 2019-08-13
- 小白如何入门 Python 爬虫? 2019-08-13
- python_字符串方法 2019-08-13
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash