Python学习 :多线程 --- 锁

2019-04-11 10:39:00来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

 多线程

  什么是锁?

  - 锁通常被用来实现对共享资源的同步访问

  - 为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁:

  GIL(Global Interpreter Lock) 全局的解释器锁

  增加锁的目的:

  1.虽然效率十分低,但保证了数据的安全性

  2.不同的锁对应保护不同的数据

  3.谁拿到GIL锁就让谁得到Cpython解释器的执行权限

  4.GIL锁保护的是Cpython解释器数据的安全,而不会保护你自己程序的数据的安全

  5.GIL锁当遇到阻塞的时候,就被迫把锁给释放了,那么其他的就开始抢锁了,抢到后把值进行修改,但是第一个拿到锁的还依旧保持着原本的数据,当再次拿到锁的时候,数据已经修改了,而第一位拿的还是原来的数值,这样就造成了混乱,也就保证不了数据的安全了。

  同步锁Lock

  - GIL与Lock是两把锁,保护的数据不一样,前者是解释器级别的(保护的是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据

  实例:没有加上锁的情况

  - 在执行这个操作的多条bytecodes期间的时候可能中途就换别的线程了,这样就出现了data races的情况

mport time
import threading
def addNum():
    global num # 在每个线程中都获取这个全局变量
    temp = num
    print('--get num:',num )
    time.sleep(0.01)
    num = temp - 1 # 对此公共变量进行-1操作

start = time.time()
num = 100  # 设定一个共享变量
thread_list = []
for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)

for t in thread_list: # 等待所有线程执行完毕
    t.join()

print('final num:', num )
end = time.time()
print(end - start)
# 此时并不能获取到正确的答案0
# 100个线程每一个一定都没有执行完就进行了切换,我们说过sleep就等效于IO阻塞,1s之内不会再切换回来,所以最后的结果一定是99.
# 多个线程都在同时操作同一个共享资源,所以造成了资源破坏

  实例:加上锁的情况

  - 同步锁保证了在同一时刻只有一个线程被执行

import time
import threading

def addNum():
    global num # 在每个线程中都获取这个全局变量
    lock.acquire() # 获取锁
    temp = num
    print('--get num:',num )
    num = temp - 1 # 对此公共变量进行-1操作
    lock.release() # 只有在执行完上述内容才会释放锁

start = time.time()
num = 100  # 设定一个共享变量
thread_list = []
lock = threading.Lock()

for i in range(100):
    t = threading.Thread(target=addNum)
    t.start()
    thread_list.append(t)

for t in thread_list: #等待所有线程执行完毕
    t.join()

print('final num:', num )
end = time.time()
print(end - start)

  死锁Lock

  线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁的情况

  因为系统判断这部分资源都正在使用,所有这两个线程在无外力作用下将一直等待下去

import threading,time

class myThread(threading.Thread):
    def LoA(self):
        lockA.acquire()
        print(self.name,"got lockA",time.ctime())
        time.sleep(3)
        lockB.acquire()
        print(self.name,"got lockB",time.ctime())
        lockB.release()
        lockA.release()
    def LoB(self):
        lockB.acquire()
        print(self.name,"got lockB",time.ctime())
        time.sleep(2)
        lockA.acquire()
        print(self.name,"got lockA",time.ctime())
        lockA.release()
        lockB.release()
    def run(self):
        self.LoA()
        self.LoB()

if __name__=="__main__":
    lockA=threading.Lock()
    lockB=threading.Lock()
    # 解决方案:添加 lock = threading.RLock()
    # lock = threading.RLock()
    threads=[]
    for i in range(3):
        threads.append(myThread())
    for t in threads:
        t.start()
    for t in threads:
        t.join()
    # 此时线程会卡死,一直等待下去,此时添加递归锁即可解决死锁的问题

  递归锁 RLock

  在添加递归锁后,RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次acquire。直到一个线程所有的acquire都被release,其他的线程才能获得资源

  信号量

  信号量用来控制线程并发数的,它也是一把锁,BoundedSemaphore或Semaphore管理一个内置的计数 器,每当调用acquire()时-1,调用release()时+1

  计数器不能小于0,当计数器为 0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。(类似于停车位的概念)

  BoundedSemaphore与Semaphore的唯一区别在于前者将在调用release()时检查计数 器的值是否超过了计数器的初始值,如果超过了将抛出一个异常

import threading,time
class myThread(threading.Thread):
    def run(self):
        if semaphore.acquire(): # 如果上信号量锁就往下进行
            print(self.name)
            time.sleep(5)
            semaphore.release()
if __name__=="__main__":
    semaphore = threading.Semaphore(5) # 一次允许5个线程进行
    # semaphore = threading.BoundedSemaphore(5) # 与上述效果一致
    thrs = []
    for i in range(20): # 开启20个线程
        thrs.append(myThread())
    for t in thrs:
        t.start()

  条件变量同步

  有一类线程需要满足条件之后才能够继续执行,Python提供了threading.Condition对象用于条件变量线程的支持,它除了能提供RLock()或Lock()的方法外,还提供了wait()、notify()、notifyAll()方法

  lock_con = threading.Condition([Lock / Rlock]): 默认创建一个RLock锁,用于线程间的通信

  wait():条件不满足时调用,线程会释放锁并进入等待阻塞

  notify():条件创造后调用,通知等待池激活一个线程

  notifyAll():条件创造后调用,通知等待池激活所有线程

import threading,time
from random import randint

class Producer(threading.Thread):
    def run(self):
        global L
        while True:
            val=randint(0,100)
            print('生产者',self.name,":Append"+str(val),L)
            if lock_con.acquire():
                L.append(val)
                lock_con.notify() # 激活一个线程
                lock_con.release()
            time.sleep(3)
class Consumer(threading.Thread):
    def run(self):
        global L
        while True:
                lock_con.acquire() # wait()过后,从此处开始进行
                if len(L)==0:
                    lock_con.wait() # 进入等待阻塞
                    print('继续进行') # 我们可以看到并没有打印这个话,这说明线程不是从wait()下面继续进行
                print('消费者',self.name,":Delete"+str(L[0]),L)
                del L[0]
                lock_con.release()
                time.sleep(0.25)

if __name__=="__main__":

    L = []
    lock_con = threading.Condition()
    threads = []
    for i in range(5):
        threads.append(Producer())
    threads.append(Consumer())
    for t in threads:
        t.start()
    for t in threads:
        t.join()

  同步条件(Event)

  条件同步和条件变量同步差不多意思,只是少了锁功能,同步条件不是锁

  因为条件同步设计于不访问共享资源的条件环境。event = threading.Event():条件环境对象,初始值为False;

  event.isSet():返回event的状态值

  event.wait():如果 event.isSet()==False将阻塞线程

  event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度

  event.clear():恢复event的状态值为False

import threading,time
import random
def light():
   if not event.isSet():
        event.set() #wait就不阻塞 #绿灯状态
    count = 0
while True: if count < 10: print('\033[42;1m--green light on---\033[0m') elif count <13: print('\033[43;1m--yellow light on---\033[0m') elif count <20: if event.isSet(): event.clear() print('\033[41;1m--red light on---\033[0m') else: count = 0 event.set() # 打开绿灯 time.sleep(1) count += 1 def car(n): while 1: time.sleep(random.randrange(10)) if event.isSet(): # 绿灯 print("car [%s] is running.." % n) else: print("car [%s] is waiting for the red light.." %n) if __name__ == '__main__': event = threading.Event() Light = threading.Thread(target=light) Light.start() for i in range(3): t = threading.Thread(target=car,args=(i,)) t.start()

原文链接:https://www.cnblogs.com/ArticleYeung/p/10668568.html
如有疑问请与原作者联系

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:Python——Django运行问题

下一篇:开始我的编程笔记