pandas(三)
2019-04-11 10:26:39来源:博客园 阅读 ()
合并数据集:
创建一个能创建dataframe的函数
def make_data(cols,ind):
data={c:[strc(c)+str(i) for i in ind]
for c in cols}
return pd.DataFrame(data,ind)
make_data('ABC',range(3))
一维数组
ser1 = pd.Series(['a','b','c'],index=[1,2,3])
ser2 = pd.Series(['d','e','f'],index=[4,5,6])
pd.concat([ser1,ser2])
二维数组
df1 = make_data('ab',[1,2])
df2 = make_data('ab',[3,4])
pd.concat([df1,df2]) 默认逐行合并axis=0(上下合并)
pandas 在合并索引时会保留索引,即使是重复的
触发索引重复异常:
veriy_integrity参数可以触发索引重复异常
try:
pd.concat([x,y],verify_integrity=True)
except ValueError as e:
print('v')
忽略索引重复异常:
ignore_index可以实现忽略原先索引重新创建一个整数索引
当列名有相同也有不相同时
join,join_axes
join默认参数是outer 取两个数组的并集
inner指取两个数组的交集
append效果和concat相同
df1.append(df2)
重复列名 suffixes
df8 = pd.DataFrame({'name':['a','b','c'],'rank':[1,2,3]})
df9 = pd.DataFrame({'name':['a','b','c'],'rank':[4,5,6]})
pd.merge(df8,df9,on='name',suffixes=['_L','_R'])
merge效果和concat相同,on表示以name这一列为基础合并,suffixes表示将相同的两列区分
原文链接:https://www.cnblogs.com/saber-xi/p/10643940.html
如有疑问请与原作者联系
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
上一篇:科学计算库Numpy——文件读写
- python_0基础开始_day07 2019-08-13
- Django和前端用ajax传输json等数据 2019-08-13
- 链接 Mysql 创建 数据库和创表,增加数据 2019-08-13
- Python数据基础类型-列表 2019-08-13
- JavaScript获取Django模板中指定键值的数据,使用过滤器 2019-08-13
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash