利用Python进行数据分析_Pandas_处理缺失数据
2018-12-19 01:46:53来源:博客园 阅读 ()
申明:本系列文章是自己在学习《利用Python进行数据分析》这本书的过程中,为了方便后期自己巩固知识而整理。
1 读取excel数据
import pandas as pd import numpy as np file = 'D:\example.xls' df = pd.DataFrame(pd.read_excel(file)) df
2 检测缺失值
2.1 isnull返回一个含有布尔值的对象
import pandas as pd import numpy as np file = 'D:\example.xls' df = pd.DataFrame(pd.read_excel(file)) df = df.isnull() df
2.2 notnull 是isnull 的否定式
import pandas as pd import numpy as np file = 'D:\example.xls' df = pd.DataFrame(pd.read_excel(file)) df = df.notnull() df
3 滤除缺失数据
3.1 滤除所有包含缺失值的行
df.dropna()
3.2 查看不含缺失值的所有行、列
df.dropna(thresh=4)
4 填充缺失数据
DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
4.1 统一填充某一个值value
df.fillna(0)或df.fillna(value=0)
4.2 用前面的值填充缺失部分
df.fillna(method='ffill')
4.3 用后面的值填充缺失部分
df.fillna(method='bfill')
4.3 某N列用特定的值填充缺失部分
df.fillna({'起息日':'2018-12-11','评级得分':'100'})
4.4 指定一整个轴的值填充缺失部分
df.fillna(method='ffill',axis=1)
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
下一篇:一个简单的身份证校验
- python3基础之“术语表(2)” 2019-08-13
- python3 之 字符串编码小结(Unicode、utf-8、gbk、gb2312等 2019-08-13
- Python3安装impala 2019-08-13
- 小白如何入门 Python 爬虫? 2019-08-13
- python_字符串方法 2019-08-13
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash