python 自定义函数表达式 拟合求系数
2018-11-09 02:38:22来源:博客园 阅读 ()
https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://blog.csdn.net/weixin_36602742/article/details/53469011
https://blog.csdn.net/changdejie/article/details/83089933
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit def func(x, a, b, c): return a * np.exp(-b * x) + c #Define the data to be fit with some noise: xdata = np.linspace(0, 4, 50) y = func(xdata, 2.5, 1.3, 0.5) np.random.seed(1729) y_noise = 0.2 * np.random.normal(size=xdata.size) ydata = y + y_noise plt.plot(xdata, ydata, 'b-', label='data') #Fit for the parameters a, b, c of the function func: popt, pcov = curve_fit(func, xdata, ydata) print popt plt.plot(xdata, func(xdata, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) #Constrain the optimization to the region of 0 <= a <= 3, 0 <= b <= 1 and 0 <= c <= 0.5: popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5])) print popt plt.plot(xdata, func(xdata, *popt), 'g--', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) plt.xlabel('x') plt.ylabel('y') plt.legend() plt.show()
其他案例学习 https://docs.scipy.org/doc/scipy/reference/index.html
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
- python3基础之“术语表(2)” 2019-08-13
- python3 之 字符串编码小结(Unicode、utf-8、gbk、gb2312等 2019-08-13
- Python3安装impala 2019-08-13
- 小白如何入门 Python 爬虫? 2019-08-13
- python_字符串方法 2019-08-13
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash