常用模块-02
2018-10-10 08:39:48来源:博客园 阅读 ()
主要内容
1. 什么是序列化
2. pickle
3. shelve
4. json
5. configparser模块
一. 什么是序列化
在我们存储数据或者网络传输数据的时候. 需要对我们的对象进行处理. 把对象处理成
方便存储和传输的数据格式. 这个过程叫>>>序列化<<<. 不同的序列列化, 结果也不同. 但是目的是一样的. 都是为了存储和传输.
在python中存在三种序列化的方案.
◎1. pickle. 可以将我们python中的任意数据类型转化成bytes并写入到文件中. 同样也可以把文件中写好的bytes转换回我们python的数据. 这个过程被称为反序列化
◎2. shelve. 简单另类的一种序列化的方案. 有点儿类似后面我们学到的redis. 可以作为一种小型的数据库来使用
◎3. json. 将python中常见的字典, 列表转化成字符串. 是目前后端数据交互使?用频率最高的一种数据格式.
二. pickle
pickle用起来很简单. 说白了. 就是把我们的python对象写入到文件中的一种解决方案.
但是写入到文件的是bytes. 所以这东西不是给人看的. 是给机器看的.
import pickle
# dumps 序列化。 把对象转化成bytes
# loads 反序列化。 把bytes转化成对象
# dump 序列化。 把对象转化成bytes并写入文件
# load 反序列化。把文件中的bytes读取。转化成对象
class Cat: def __init__(self, name, age): self.name = name self.age = age def catchMouse(self): print(self.name, "抓老鼠") c = Cat("jerry", 18) bs = pickle.dumps(c) # 序列化一个对象. print(bs) # 一堆二进制. 看不懂 cc = pickle.loads(bs) # 把二进制反序列化成我们的对象 cc.catchMouse() # 猫依然是猫. 还可以抓老鼠
★pickle中的dumps可以序列化一个对象. loads可以反序列化一个对象. 我们使用dump还可以直接 把一个对象写入到文件中:
# f = open("cat", mode="wb") # pickle.dump(c, f) # 写入到文件中 # f.close() f = open("cat", mode="rb") cc = pickle.load(f) # 从文件中读取对象 cc.catchMouse()
★pickle还?支持多个对象的写出:
#1.
lst = [Cat("jerry", 19), Cat("tommy", 20), Cat("alpha", 21)] f = open("cat", mode="wb") for el in lst: pickle.dump(el, f) # 写入到文件中 f.close() f = open("cat", mode="rb") for i in range(len(lst)): cc = pickle.load(f) # 从文件中读取对象 cc.catchMouse()
#+2.
lst = [Cat("猫1", 10), Cat("猫2", 9), Cat("猫3", 8), Cat("猫4", 7), Cat("猫5", 6)]
f = open("pickle-test", mode="wb")
pickle.dump(lst, f)
for el in lst:
pickle.dump(el, f)
f.flush()
f.close()
◆但是这样写并不够好. 因为读的时候. 并不能知道有多少对象要读. 这里记住, 不能一行一行的读. 那真的要写入或者读取多个内容怎么办? 很简单. 装lis里. 然后读取和写入都用list
lst = [Cat("jerry", 19), Cat("tommy", 20), Cat("alpha", 21)]
f = open("pickle-test", mode="rb")
while 1:
try:
c1 = pickle.load(f)
c1.catchMouse()
except EOFError:
break
记住一点, pickle序列化的内容是二进制的内容(bytes) 不是给人看的.
三. shelve
shelve提供python的 >>>持久化<<< 操作. 什么叫持久化操作呢? 说白话,就是把数据写到硬盘上.
在操作shelve的时候非常的像操作一个字典. 这个东西到后期. 就像redis差不多.
import shelve shelf = shelve.open("sylar") # shelf["jay"] = "周杰伦" print(shelf['jay']) shelf.close()
s = shelve.open("sylar")
# s["jay"] = {"name":"周杰伦", "age":18, "hobby":"哄小孩"}
print(s['jay'])
s.close()
# 但是, 有坑
s = shelve.open("sylar")
s['jay']['name'] = "胡辣汤" # 尝试改变字典中的数据
s.close()
s = shelve.open("sylar")
print(s['jay']) # 并没有改变
s.close()
# 解决方案:
s = shelve.open("sylar", writeback=True)
s['jay']['name'] = "胡辣汤" # 尝试改变字典中的数据
s.close()
s = shelve.open("sylar")
print(s['jay']) # 改变了.
s.close()
★ writeback=True 可以动态的把我们修改的信息写入到文件中. 而且还可以删除数据. 就像字典一样. 上一波操作:
s = shelve.open("sylar", writeback=True) del s['jay'] s.close()
s = shelve.open("sylar") print(s['jay']) # 报错了, 没有了 s.close()
s = shelve.open("sylar", writeback=True) s['jay'] = "周杰伦" s['wlj'] = "王力宏" s.close()
s = shelve.open("sylar") for k in s: # 像字典一样遍历 print(k) print(s.keys()) # 拿到所有key的集合 for k in s.keys(): print(k) for k, v in s.items(): # 像字典一样操作 print(k, v) s.close()
综上 shelve 就当成字典来用就行了. 它比redis还简单.......
四. ★☆★ ☆ json ☆★☆★
json是我们前后端交互的枢纽. 相当于编程界的普通话. 大家沟通都用json. 为么这样呢? 因为json的语法格式可以完美的表示出一个对象. 那么是json: json 全称 >>>javascript object notation . 翻译过来叫js对象简谱. 很复杂是吧? 来上一段简单的代码:
wf = { "name":"汪峰", "age":18, "hobby":"上头条", "wife":{ "name":'?子怡', "age":19, "hobby":["唱歌", "跳舞", "演戏"] } }
这个不是字典么? 对的. 在python里这叫字典. 但是在javascript里这叫 json. 一模一样的. 我们发现用这样的数据结构可以完美的表示出任何对象. 并且可以完整的把对象表示出来. 只要代码格式比较好. 那可读性也是很强的. 所以大家公认用这样一种数据结构作为数据交互的格式. 那在这个东西之前是什么呢? XML.....来看?一段代码
<?xml version="1.0" encoding="utf-8" ?> <wf> <name>汪峰</name> <age>18</age> <hobby>上头条</hobby> <wife> <name>?子怡</name> <age>18</age> <hobbies> <hobby>唱歌</hobby> <hobby>跳舞</hobby> <hobby>演戏</hobby> </hobbies> </wife> </wf>
古人(老程序员)都是用这样的数据进行传输的. 先不管这个东西好不好看. 这玩意想要解析.. 那简直了. 想死的心都有. 所以老版本的xml在维护和处理理上是非常复杂和繁琐的. 以前的项目几乎没有用ajax的.
那json既然这么牛B好?用. 怎么用呢? 注意. 这里又出来一个新问题. 我们的程序是在python?里写的. 但是前端是在JS那边来解析json的. 所以. 我们需要把我们程序产生的字典转化成json格式的json串(字符串). 然后网络传输. 那边接收到了之后. 它爱怎么处理是它的事情. 那, 如何把字典转化成我们的json格式的字符串呢?很简单, 上代码:
import json dic = {"a": "女王", "b": "萝莉", "c": "小清新"} s = json.dumps(dic) # 把字典转化成json字符串 print(s) # {"a": "\u5973\u738b", "b": "\u841d\u8389", "c":"\u5c0f\u6e05\u65b0"}
# 结果很不友好啊. 那如何处理中文呢? 在dumps的时候给出另一个参数ensure_ascii=False就可以了 import json dic = {"a": "女王", "b": "萝莉", "c": "小清新"} s = json.dumps(dic, ensure_ascii=False) # 把字典转化成json字符串 print(s) # {"a": "女王", "b": "萝莉", "c": "小清新"}
# 假如,前端给你传递信息了. 你要把前端传递过来的json字符串转化成字典: import json s = '{"a": "女王", "b": "萝莉", "c": "小清新"}' dic = json.loads(s) print(type(dic), dic)
# json也可以像pickle一样把序列化的结果写入到文件中. dic = {"a": "女王", "b": "萝莉", "c": "小清新"} f = open("test.json", mode="w", encoding="utf-8") json.dump(dic, f, ensure_ascii=False) # 把对象打散成json写入到文件中 f.close() 同样也可以从文件中读取一个json f = open("test.json", mode="r", encoding="utf-8") dic = json.load(f) f.close() print(dic)
# ★ 注意. 我们可以向同一个文件中写入多个json串. 但是读不行. import json lst = [{"a": 1}, {"b": 2}, {"c": 3}] f = open("test.json", mode="w", encoding="utf-8") for el in lst: json.dump(el, f) f.close()
# 注意, 此时文件中的内容是一行内容: # >>> {"a": 1}{"b": 2}{"c": 3}
# 这在读取的时候是无法正常读取的. 那如何解决呢? 两套?方案. 方案一. 把所有的内容准备好统一 # 进行写入和读取. 但这样处理, 如果数据量小还好. 数据量大的话, 就不够友好了. 方案二. 不用dump.
# 改用dumps和loads. 对每一行分别进行处理:
import json lst = [{"a": 1}, {"b": 2}, {"c": 3}]
# 写入的时候
# 1. 循环
# 2. 用dumps把字典转化成字符串, 然后手工在后面加一个\n
# 3. 写出
f = open("test.json", mode="w", encoding="utf-8")
for el in lst:
s = json.dumps(el, ensure_ascii=True) + "\n"
f.write(s)
f.close()
# 读取的时候
# 1. for line in f:
# 2. strip()去掉空白
# 3. loads()变成字典
f = open("test.json", mode="r", encoding="utf-8")
for line in f:
dic = json.loads(line.strip())
print(dic)
f.close()
五. configparser模块
该模块适用于配置文件的格式与windows ini文件类似,可以包含一个或多个节(section)每个节
可以有多个参数(键=值).
[DEFAULT] ServerAliveInterval = 45 Compression = yes CompressionLevel = 9 ForwardX11 = yes
[[ bitbucket.org]] User = hg
[[ topsecret.server.com]] Port = 50022 ForwardX11 = no
# 我们用configparser就可以对这样的文件进行处理.首先, 是初始化 import configparser
config = configparser.ConfigParser() config['DEFAULT'] = { "sleep": 1000, "session-time-out": 30, "user-alive": 999999 }
config['TEST-DB'] = { "db_ip": "192.168.17.189", "port": "3306", "u_name": "root", "u_pwd": "123456" }
config['168-DB'] = { "db_ip": "152.163.18.168", "port": "3306", "u_name": "root", "u_pwd": "123456" }
config['173-DB'] = { "db_ip": "152.163.18.173", "port": "3306", "u_name": "root", "u_pwd": "123456" }
f = open("db.ini", mode="w") config.write(f) # 写入文件 f.flush() f.close()
# 读取文件信息: config = configparser.ConfigParser()
config.read("db.ini") # 读取文件 print(config.sections()) # 获取到section. 章节...DEFAULT是给每个章节都配备的信息 print(config.get("DEFAULT", "SESSION-TIME-OUT")) # 从xxx章节中读取到xxx信息 # ◆ 也可以像字典一样操作 print(config["TEST-DB"]['DB_IP']) print(config["173-DB"]["db_ip"])
for k in config['168-DB']: print(k) for k, v in config["168-DB"].items(): print(k, v)
print(config.options('168-DB')) # 同for循环,找到'168-DB'下所有键 print(config.items('168-DB')) #找到'168-DB'下所有键值对 print(config.get('168-DB','db_ip')) # 152.163.18.168 get方法Section下的key对应的value
# ◆ 增删改操作: # ◎ 先读取. 然后修改. 最后写回文件 config = configparser.ConfigParser() config.read("db.ini") # 读取文件 (全部都读出来了)
# 添加一个章节 # config.add_section("189-DB") # config["189-DB"] = { # "db_ip": "167.76.22.189", # "port": "3306", # "u_name": "root", # "u_pwd": "123456" # } # 修改信息 config.set("168-DB", "db_ip", "10.10.10.168")
# 删除章节 config.remove_section("173-DB")
# 删除元素信息 config.remove_option("168-DB", "u_name")
# ◎ 写回?文件 config.write(open("db.ini", mode="w"))
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
上一篇:python枚举类型
- python3 enum模块的应用 2019-08-13
- 利用python自动生成verilog模块例化模板 2019-08-13
- python爬虫常用库 2019-08-13
- python Django基础操作 2019-07-24
- Python random模块(以后用到一个再更新一个) 2019-07-24
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash