机器学习——线性回归-KNN-决策树(实例)

2018-10-10 08:39:31来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

导入类库

1 import numpy as np
2 import pandas as pd
3 from sklearn.linear_model import LinearRegression
4 from sklearn.preprocessing import StandardScaler
5 from sklearn.neighbors import KNeighborsClassifier
6 from sklearn.feature_extraction import DictVectorizer
7 from sklearn.tree import DecisionTreeClassifier

线性回归

 1 def price_predict():
 2     # 数据有三个特征:距离地铁距离、附近小学数量、小区绿化率
 3     X = np.array([[500.0, 3.0, 0.3], [1000.0, 1.0, 0.6], [750.0, 2.0, 0.3], [600.0, 5.0, 0.2], [1200.0, 1.0, 0.6]])
 4     # 具有三个特征的房屋对应的房价
 5     Y = np.array([10000, 9000, 8000, 12000, 8500])
 6 
 7     # 标准化,按列转化,转化到数据均值为0方差为1的标准分布内
 8     std_x = StandardScaler()
 9     x_train = std_x.fit_transform(X)
10     std_y = StandardScaler()
11     y_train = std_y.fit_transform(Y.reshape(-1, 1))
12 
13     # 构建线性预测模型
14     lr = LinearRegression()
15     # 模型在历史数据上进行训练,Y.reshape(-1,1)将Y变为二维数组,fit函数要求二维数组
16     lr.fit(x_train, y_train)
17 
18     # 使用训练模型预测新房屋价格
19     x_predict = std_x.transform(np.array([[1300, 3.0, 0.4]]))
20     print(std_y.inverse_transform(lr.predict(x_predict)))

KNN

 1 # K近邻分类(K表示以最近的几个邻居作为分类的指标)
 2 # KNN表示了物以类聚人以群分的基本思考方法,最近的K个邻居是什么类别,预测样本就会被划为该类别
 3 def knn_predict_rev():
 4     # 数据理解为二维坐标上的6歌点
 5     X = np.array([[1.0, 1.0], [1, 1.5], [0.5, 1.5], [3.0, 3.0], [3.0, 3.5], [2.8, 3.1]])
 6     # 6个点的类别,按顺序和X依次对应
 7     Y = np.array([0, 0, 0, 1, 1, 1])
 8 
 9     # n_neighbors就是KNN中的K
10     knn = KNeighborsClassifier(n_neighbors=3)
11     knn.fit(X, Y)
12     print(knn.predict(np.array([[2.0, 3.0]])))

决策树

 1 def decide_play():
 2     '''
 3     ID3
 4     :return:
 5     '''
 6     df = pd.read_csv('dtree.csv')
 7     # 将数据转换为字典格式,orient='record'参数指定数据格式为{column:value}的形式
 8     # 一个字典对应一行数据
 9     dict_train = df.loc[:, ['Outlook', 'Temperatur', 'Humidity', 'Windy']].to_dict(orient='record')
10     # 如果pandas从DataFrame取出一列数据,该数据类型会变成Series
11     dict_target = pd.DataFrame(df['PlayGolf'], columns=['PlayGolf']).to_dict(orient='record')
12 
13     # 训练数据字典向量化
14     dv_train = DictVectorizer()
15     x_train = dv_train.fit_transform(dict_train)
16     # 目标数据字典向量化
17     dv_target = DictVectorizer()
18     y_target = dv_target.fit_transform(dict_target)
19 
20     # 创建决策树
21     d_tree = DecisionTreeClassifier()
22     # 训练数据
23     d_tree.fit(x_train, y_target)
24     data_predict = {
25         'Humidity': 85,
26         'Outlook': 'sunny',
27         'Temperatur': 85,
28         'Windy': False
29     }
30     # 标准化要预测的数据
31     x_data = dv_train.transform(data_predict)
32     # 预测数据并转换为原格式
33     print(dv_target.inverse_transform(d_tree.predict(x_data)))

 

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:万恶之源 - Python运算符与编码

下一篇:Python函数式编程之闭包