pandas的resample重采样

2018-06-25 05:54:41来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。

降采样:高频数据到低频数据

升采样:低频数据到高频数据

主要函数:resample()(pandas对象都会有这个方法)

resample方法的参数

参数说明
freq 表示重采样频率,例如‘M’、‘5min’,Second(15)
how=’mean’ 用于产生聚合值的函数名或数组函数,例如‘mean’、‘ohlc’、np.max等,默认是‘mean’,其他常用的值由:‘first’、‘last’、‘median’、‘max’、‘min’
axis=0 默认是纵轴,横轴设置axis=1
fill_method = None 升采样时如何插值,比如‘ffill’、‘bfill’等
closed = ‘right’ 在降采样时,各时间段的哪一段是闭合的,‘right’或‘left’,默认‘right’
label= ‘right’ 在降采样时,如何设置聚合值的标签,例如,9:30-9:35会被标记成9:30还是9:35,默认9:35
loffset = None 面元标签的时间校正值,比如‘-1s’或Second(-1)用于将聚合标签调早1秒
limit=None 在向前或向后填充时,允许填充的最大时期数
kind = None 聚合到时期(‘period’)或时间戳(‘timestamp’),默认聚合到时间序列的索引类型
convention = None 当重采样时期时,将低频率转换到高频率所采用的约定(start或end)。默认‘end’

首先创建一个Series,采样频率为一分钟。

 

>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00    0
2000-01-01 00:01:00    1
2000-01-01 00:02:00    2
2000-01-01 00:03:00    3
2000-01-01 00:04:00    4
2000-01-01 00:05:00    5
2000-01-01 00:06:00    6
2000-01-01 00:07:00    7
2000-01-01 00:08:00    8
Freq: T, dtype: int64
降低采样频率为三分钟

 

>>> series.resample('3T').sum()
2000-01-01 00:00:00     3
2000-01-01 00:03:00    12
2000-01-01 00:06:00    21
Freq: 3T, dtype: int64
降低采样频率为三分钟,但是每个标签使用right来代替left。请注意,bucket中值的用作标签。

 

>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00     3
2000-01-01 00:06:00    12
2000-01-01 00:09:00    21
Freq: 3T, dtype: int64
降低采样频率为三分钟,但是关闭right区间。

 

>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00     0
2000-01-01 00:03:00     6
2000-01-01 00:06:00    15
2000-01-01 00:09:00    15
Freq: 3T, dtype: int64
增加采样频率到30秒

 

>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00     0
2000-01-01 00:00:30   NaN
2000-01-01 00:01:00     1
2000-01-01 00:01:30   NaN
2000-01-01 00:02:00     2
Freq: 30S, dtype: float64
增加采样频率到30S,使用pad方法填充nan值。

 

>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00    0
2000-01-01 00:00:30    0
2000-01-01 00:01:00    1
2000-01-01 00:01:30    1
2000-01-01 00:02:00    2
Freq: 30S, dtype: int64
增加采样频率到30S,使用bfill方法填充nan值。

 

>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00    0
2000-01-01 00:00:30    1
2000-01-01 00:01:00    1
2000-01-01 00:01:30    2
2000-01-01 00:02:00    2
Freq: 30S, dtype: int64
通过apply运行一个自定义函数

 

>>> def custom_resampler(array_like):
...     return np.sum(array_like)+5
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00     8
2000-01-01 00:03:00    17
2000-01-01 00:06:00    26
Freq: 3T, dtype: int64

 

出处:https://blog.csdn.net/wangshuang1631/article/details/52314944

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:如何用Python爬取LOL官网全英雄皮肤

下一篇:ASP.NET 状态的传递和保存