爬虫Scrapy框架运用----房天下二手房数据采集

2018-06-18 02:45:31来源:未知 阅读 ()

新老客户大回馈,云服务器低至5折

       在许多电商和互联网金融的公司为了更好地服务用户,他们需要爬虫工程师对用户的行为数据进行搜集、分析和整合,为人们的行为选择提供更多的参考依据,去服务于人们的行为方式,甚至影响人们的生活方式。我们的scrapy框架就是爬虫行业使用的主流框架,房天下二手房的数据采集就是基于这个框架去进行开发的。

  数据采集来源:‘房天下----全国二手房’
  目标数据:省份名、城市名、区域名、房源介绍、房源小区、户型、朝向、楼层、建筑面积、建造时间、单价、楼盘链接

  数据库设计:province、city、area、house四张表

  爬虫spider部分demo:

获取省份、城市信息和链接

 1 #获取省份名字,城市的链接url
 2     def mycity(self,response):
 3          #获得关键节点
 4         links = response.css('#c02 > ul > li')
 5         for link in links:
 6             try:
 7                 province_name=link.xpath('./strong/text()').extract_first()
 8                 urllinks=link.xpath('./a')
 9                 for urllink in urllinks:
10                     city_url=urllink.xpath('./@href').extract_first()
11                     if city_url[-1]=='/':
12                         city_url=city_url[:-1]
13                     yield scrapy.Request(url=city_url,meta={'province_name':province_name,'city_url':city_url},callback=self.area)
14             except Exception:
15                 pass

获取区域的链接url和信息 

1 #获取区域的链接url
2     def area(self,response):
3         try:
4             links=response.css('.qxName a')
5             for link in links[1:]:
6                 area_url=response.url+link.xpath('@href').extract_first()
7                 yield scrapy.Request(url=area_url,meta=response.meta,callback=self.page)
8         except Exception:
9             pass
View Code

获取楼盘房源的信息

 1     def houselist(self,response):
 2         item={}
 3         city_name = response.css('#list_D02_01 > a:nth-child(3)::text').extract_first()
 4         area_name=response.css('#list_D02_01 > a:nth-child(5)::text').extract_first()
 5         if city_name:
 6             item['city_name']=city_name[:-3]
 7         if area_name:
 8             item['area_name']=area_name[:-3]
 9         links=response.xpath('/html/body/div[3]/div[4]/div[5]/dl')
10         if  links:
11             for link in links:
12                 try:
13                     item['title']=link.xpath('./dd/p[1]/a/text()').extract_first()
14                     house_info=link.xpath('./dd/p[2]/text()').extract()
15                     if house_info:
16                         item['province_name']=response.meta['province_name']
17                         item['house_type']=link.xpath('./dd/p[2]/text()').extract()[0].strip()
18                         item['floor']=link.xpath('./dd/p[2]/text()').extract()[1].strip()
19                         item['oritenation']=link.xpath('./dd/p[2]/text()').extract()[2].strip()
20                         item['build_time']=link.xpath('./dd/p[2]/text()').extract()[3].strip()[5:]
21                         item['house_name']=link.xpath('./dd/p[3]/a/span/text()').extract_first()
22                         item['house_area']=link.xpath('./dd/div[2]/p[1]/text()').extract_first()
23                         item['per_price']=int(link.xpath('./dd/div[3]/p[2]/text()').extract_first()[:-1])
24                         list_url = link.xpath('./dd/p[1]/a/@href').extract_first()
25                         item['house_url']=response.meta['city_url']+list_url
26                         yield item
27                 except Exception:
28                     pass
View Code

此时就可以运行scrapy crawl+爬虫名,我们就可以爬取到网站的信息,但是我们如何使用这些数据呢,那就要通过pipelines将数据插入到数据库中。

爬虫pipelines部分demo:

 1 # -*- coding: utf-8 -*-
 2 
 3 # Define your item pipelines here
 4 #
 5 # Don't forget to add your pipeline to the ITEM_PIPELINES setting
 6 # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
 7 import pymysql
 8 
 9 class HousePipeline(object):
10     def open_spider(self,spider):
11         self.con=pymysql.connect(user='root',passwd='123',db='test',host='localhost',port=3306,charset='utf8')
12         self.cursor=self.con.cursor(pymysql.cursors.DictCursor)
13         return spider
14     def process_item(self, item, spider):
15         #插入省份表
16         province_num=self.cursor.execute('select * from home_province where province_name=%s',(item['province_name'],))
17         if province_num:
18             province_id=self.cursor.fetchone()['id']
19         else:
20             sql='insert into home_province(province_name) values(%s)'
21             self.cursor.execute(sql,(item['province_name']))
22             province_id=self.cursor.lastrowid
23             self.con.commit()
24         #插入城市表
25         ##规避不同省份城市重名的情况
26         city_num=self.cursor.execute('select * from home_city where city_name=%s and province_id=%s',(item['city_name'],province_id))
27         if city_num:
28             city_id=self.cursor.fetchone()['id']
29         else:
30             sql='insert into home_city(city_name,province_id) values(%s,%s)'
31             self.cursor.execute(sql,(item['city_name'],province_id))
32             city_id=self.cursor.lastrowid
33             self.con.commit()
34         #插入区域表
35         ##规避不同城市区域重名的情况
36         area_num=self.cursor.execute('select * from home_area where area_name=%s and city_id=%s',(item['area_name'],city_id))
37         if area_num:
38             area_id=self.cursor.fetchone()['id']
39         else:
40             sql = 'insert into home_area (area_name,city_id,province_id)value(%s,%s,%s)'
41             self.cursor.execute(sql,(item['area_name'],city_id,province_id))
42             area_id = self.cursor.lastrowid
43             self.con.commit()
44         #插入楼盘信息表
45         house_num=self.cursor.execute('select house_name from home_house where house_name=%s',( item['house_name'],))
46         if house_num:
47             pass
48         else:
49             sql = 'insert into home_house(title,house_type,floor,oritenation,build_time,house_name,house_area,per_price,house_url,area_id,city_id,province_id) values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)'
50             self.cursor.execute(sql, (
51             item['title'], item['house_type'], item['floor'], item['oritenation'], item['build_time'],
52             item['house_name'], item['house_area'], item['per_price'],item['house_url'], area_id,city_id,province_id,))
53             self.con.commit()
54         return item
55     def close_spider(self,spider):
56         self.cursor.close()
57         self.con.close()
58         return spider
View Code

采集数据效果:

 

    

 

  

  

 

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:Django处理http请求流程图

下一篇:Python 中的 if __name__ == '__main__' 该如何理解