Python机器学习:泰坦尼克号获救预测一

2018-06-18 01:40:30来源:未知 阅读 ()

新老客户大回馈,云服务器低至5折

数据集下载地址:
https://github.com/fayduan/Kaggle_Titanic/blob/master/train.csv
视频地址:
http://study.163.com/course/courseLearn.htm?courseId=1003551009#/learn/video?lessonId=1004052093&courseId=1003551009
 
 
一、项目概要
1、应用
  模式识别、数据挖掘(核心)、统计学习、计算机视觉、语言识别、自然语言处理
 
2、模式、流程
  训练样本 --> 特征提取 --> 学习函数 --> 预测
二、Python实践
1、应用的模块
  Numpy:科学计算库
  pandas:数据分析处理库
  Matplotlib:数据可视化库
  Scikit-learn:机器学习库
 
2、数据源处理
① 导入数据:
  
1 #coding: utf-8
2 import pandas
3 titanic = pandas.read_csv('train.csv')
② 对缺失数据的列进行填充:
1 #对于缺失的数据进行补充 median 填充中位数
2 titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median())
③ 属性转换,把某些列的字符串值转为数字项:
1 print titanic['Sex'].unique()
2 titanic.loc[titanic['Sex'] == 'male','Sex'] = 0
3 titanic.loc[titanic['Sex'] == 'female','Sex'] = 1
4 
5 print titanic['Embarked'].unique()
6 titanic['Embarked'] = titanic['Embarked'].fillna('S')
7 titanic.loc[titanic['Embarked'] == 'S','Embarked'] = 0
8 titanic.loc[titanic['Embarked'] == 'C','Embarked'] = 1
9 titanic.loc[titanic['Embarked'] == 'Q','Embarked'] = 2
 
3、建立模型
① 引入机器学习库,核心
1 from sklearn.linear_model import LinearRegression  #分类算法 线性回归
2 from sklearn.cross_validation import KFold   #交叉验证库,将测试集进行切分验证取平均值
② 实例化模型
1 predictors = ['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']   #用到的特征
2 alg = LinearRegression() #线性回归模型实例化对象
3 kf = KFold(titanic.shape[0],n_folds=3,random_state=1) #将m个平均分成3份进行交叉验证
③ 把数据传入模型 预测结果
 1 predictions = []
 2 #for循环: 训练集、测试集、交叉验证
 3 for train, test in kf:
 4     #print train
 5     #print test
 6     train_predictors = (titanic[predictors].iloc[train,:]) #将predictors作为测试特征
 7     #print train_predictors
 8     train_target = titanic['Survived'].iloc[train]
 9     #print train_target
10     alg.fit(train_predictors,train_target)  #构建线性模型 样本的x(训练数据) 样本的y(标签值)
11     test_prediction = alg.predict(titanic[predictors].iloc[test,:]) #预测结果值
12     predictions.append(test_prediction)
 
4、算法概率计算
1 import numpy as np
2 #使用线性回归得到的结果是在区间【0,1】上的某个值,需要将该值转换成0或1
3 predictions = np.concatenate(predictions, axis=0)
4 predictions[predictions >.5] = 1
5 predictions[predictions <=.5] = 0
6 accury = sum(predictions[predictions == titanic['Survived']]) / len(predictions) #测试准确率 进行模型评估
7 print accury #精度值
 
5、集成算法 构造多个分类树
① 构造多个分类器
1 from sklearn.linear_model import LogisticRegression #逻辑回归
2 from sklearn import cross_validation
3 alg = LogisticRegression(random_state=1)
4 scores = cross_validation.cross_val_score(alg, titanic[predictors],titanic['Survived'],cv=3)
5 print scores.mean()
② 随机森林
 1 from sklearn.ensemble import RandomForestClassifier
 2 from sklearn import cross_validation
 3 predictions = ['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked']
 4 # Initialize our algorithm with the default paramters
 5 # random_state = 1 表示此处代码多运行几次得到的随机值都是一样的,如果不设置,两次执行的随机值是不一样的
 6 # n_estimators  指定有多少颗决策树,树的分裂的条件是:
 7 # min_samples_split 代表样本不停的分裂,某一个节点上的样本如果只有2个了 ,就不再继续分裂了
 8 # min_samples_leaf 是控制叶子节点的最小个数
 9 alg = RandomForestClassifier(random_state=1,n_estimators=100,min_samples_split=4,min_samples_leaf=2)
10 #进行交叉验证
11 kf = cross_validation.KFold(titanic.shape[0],n_folds=3,random_state=1)
12 scores = cross_validation.cross_val_score(alg,titanic[predictors],titanic['Survived'],cv=kf)
13 print scores.mean()

 

6、特征提取
 1 # ## 关于特征提取问题 (非常关键)
 2 # - 尽可能多的提取特征
 3 # - 看不同特征的效果
 4 # - 特征提取是数据挖掘里很- 要的一部分
 5 # - 以上使用的特征都是数据里已经有的了,在真实的数据挖掘里我们常常没有合适的特征,需要我们自己取提取
 6 ① 把多个特征组合成一个特征
 7 titanic['Familysize'] = titanic['SibSp'] + titanic['Parch'] #家庭总共多少人
 8 titanic['NameLength'] = titanic['Name'].apply(lambda x: len(x)) #名字的长度
 9 import re
10 
11 def get_title(name):
12     title_reserch = re.search('([A-Za-z]+)\.',name)
13     if title_reserch:
14         return title_reserch.group(1)
15     return ""
16 titles = titanic['Name'].apply(get_title)
17 #print pandas.value_counts(titles)
18 
19 #将称号转换成数值表示
20 title_mapping = {"Mr":1,"Miss":2,"Mrs":3,"Master":4,"Dr":5,"Rev":6,"Col":7,"Major":8,"Mlle":9,"Countess":10,"Ms":11,"Lady":12,"Jonkheer":13,"Don":14,"Mme":15,"Capt":16,"Sir":17}
21 for k,v in title_mapping.items():
22     titles[titles==k] = v
23     #print (pandas.value_counts(titles))
24 titanic["titles"] = titles #添加title特征
② 进行特征选择
 1 # 进行特征选择
 2 # 特征重要性分析
 3 # 分析 不同特征对 最终结果的影响
 4 # 例如 衡量age列的重要程度时,什么也不干,得到一个错误率error1,
 5 # 加入一些噪音数据,替换原来的值(注意,此时其他列的数据不变),又得到一个一个错误率error2
 6 # 两个错误率的差值 可以体现这一个特征的重要性
 7 import numpy as np
 8 from sklearn.feature_selection import SelectKBest,f_classif#引入feature_selection看每一个特征的重要程度
 9 import matplotlib.pyplot as plt
10 
11 predictors = ['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked','Familysize','NameLength','titles']
12 selector = SelectKBest(f_classif,k=5)
13 selector.fit(titanic[predictors],titanic['Survived'])
14 scores = -np.log10(selector.pvalues_)
③用视图的方式展示
1 plt.bar(range(len(predictors)),scores)
2 plt.xticks(range(len(predictors)),predictors,rotation='vertical')
3 plt.show()

 
7、集成分类器
 1 # 在竞赛中常用的耍赖的办法:集成多种算法,取最后每种算法的平均值,来减少过拟合
 2 from sklearn.ensemble import GradientBoostingClassifier
 3 import numpy as np
 4 # GradientBoostingClassifier也是一种随机森林的算法,可以集成多个弱分类器,然后变成强分类器
 5 algorithas = [
 6         [GradientBoostingClassifier(random_state=1,n_estimators=25,max_depth=3),['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked','Familysize','NameLength','titles']],
 7         [LogisticRegression(random_state=1),['Pclass','Sex','Age','SibSp','Parch','Fare','Embarked','Familysize','NameLength','titles']]
 8         ]
 9 kf = KFold(titanic.shape[0],n_folds=3,random_state=1)
10 predictions = []
11 for train, test in kf:
12    train_target = titanic['Survived'].iloc[train]
13    full_test_predictions = []
14    for alg,predictors in algorithas:
15        alg.fit(titanic[predictors].iloc[train,:],train_target)
16        test_prediction = alg.predict_proba(titanic[predictors].iloc[test,:].astype(float))[:,1]
17        full_test_predictions.append(test_prediction)
18    test_predictions = (full_test_predictions[0] + full_test_predictions[1]) / 2
19    test_predictions[test_predictions >.5] = 1
20    test_predictions[test_predictions <=.5] = 0
21    predictions.append(test_predictions)
22 predictions = np.concatenate(predictions,axis=0)
23 accury = sum(predictions[predictions == titanic['Survived']]) / len(predictions)#测试准确率
24 print accury

 

 
 
 
 
 
 
 

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:利用Pillow给图片添加重点框(适用UI自动化测试)

下一篇:035server端并发聊天