浅谈PostgreSQL的索引
2018-06-17 19:59:52来源:未知 阅读 ()
1. 索引的特性
1.1 加快条件的检索的特性
当表数据量越来越大时查询速度会下降,在表的条件字段上使用索引,快速定位到可能满足条件的记录,不需要遍历所有记录。
create table t(id int, info text); insert into t select generate_series(1,10000),'lottu'||generate_series(1,10000); create table t1 as select * from t; create table t2 as select * from t; create index ind_t2_id on t2(id);
lottu=# analyze t1; ANALYZE lottu=# analyze t2; ANALYZE # 没有索引 lottu=# explain (analyze,buffers,verbose) select * from t1 where id < 10; QUERY PLAN ----------------------------------------------------------------------------------------------------- Seq Scan on lottu.t1 (cost=0.00..180.00 rows=9 width=13) (actual time=0.073..5.650 rows=9 loops=1) Output: id, info Filter: (t1.id < 10) Rows Removed by Filter: 9991 Buffers: shared hit=55 Planning time: 25.904 ms Execution time: 5.741 ms (7 rows) # 有索引 lottu=# explain (analyze,verbose,buffers) select * from t2 where id < 10; QUERY PLAN --------------------------------------------------------------------------------------------------------------------- Index Scan using ind_t2_id on lottu.t2 (cost=0.29..8.44 rows=9 width=13) (actual time=0.008..0.014 rows=9 loops=1) Output: id, info Index Cond: (t2.id < 10) Buffers: shared hit=3 Planning time: 0.400 ms Execution time: 0.052 ms (6 rows)
#在这个案例中:执行同一条SQL。t2有索引的执行数据是0.052 ms;t1没有索引的是:5.741 ms;
1.2 有序的特性
索引本身就是有序的。
#没有索引 lottu=# explain (analyze,verbose,buffers) select * from t1 where id > 2 order by id; QUERY PLAN ----------------------------------------------------------------------------------------------------------------- Sort (cost=844.31..869.31 rows=9999 width=13) (actual time=8.737..11.995 rows=9998 loops=1) Output: id, info Sort Key: t1.id Sort Method: quicksort Memory: 853kB Buffers: shared hit=55 -> Seq Scan on lottu.t1 (cost=0.00..180.00 rows=9999 width=13) (actual time=0.038..5.133 rows=9998 loops=1) Output: id, info Filter: (t1.id > 2) Rows Removed by Filter: 2 Buffers: shared hit=55 Planning time: 0.116 ms Execution time: 15.205 ms (12 rows) #有索引 lottu=# explain (analyze,verbose,buffers) select * from t2 where id > 2 order by id; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------- Index Scan using ind_t2_id on lottu.t2 (cost=0.29..353.27 rows=9999 width=13) (actual time=0.030..5.304 rows=9998 loops=1) Output: id, info Index Cond: (t2.id > 2) Buffers: shared hit=84 Planning time: 0.295 ms Execution time: 7.027 ms (6 rows)
#在这个案例中:执行同一条SQL。
- t2有索引的执行数据是7.027 ms;t1没有索引的是:15.205 ms;
- t1没有索引执行还占用了 Memory: 853kB。
2. 索引扫描方式
索引的扫描方式有3种
2.1 Indexscan
先查索引找到匹配记录的ctid,再通过ctid查堆表
2.2 bitmapscan
先查索引找到匹配记录的ctid集合,把ctid通过bitmap做集合运算和排序后再查堆表
2.3 Indexonlyscan
如果索引字段中包含了所有返回字段,对可见性映射 (vm)中全为可见的数据块,不查堆表直接返回索引中的值。
这里谈谈Indexscan扫描方式和Indexonlyscan扫描方式
对这两种扫描方式区别;借用oracle中索引扫描方式来讲;Indexscan扫描方式会产生回表读。根据上面解释来说;Indexscan扫描方式:查完索引之后还需要查表。 Indexonlyscan扫描方式只需要查索引。也就是说:Indexonlyscan扫描方式要优于Indexscan扫描方式?我们来看看
现有表t;在字段id上面建来ind_t_id索引 1. t表没有VM文件。 lottu=# \d+ t Table "lottu.t" Column | Type | Modifiers | Storage | Stats target | Description --------+---------+-----------+----------+--------------+------------- id | integer | | plain | | info | text | | extended | | Indexes: "ind_t_id" btree (id) lottu=# explain (analyze,buffers,verbose) select id from t where id < 10; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------- Index Only Scan using ind_t_id on lottu.t (cost=0.29..8.44 rows=9 width=4) (actual time=0.009..0.015 rows=9 loops=1) Output: id Index Cond: (t.id < 10) Heap Fetches: 9 Buffers: shared hit=3 Planning time: 0.177 ms Execution time: 0.050 ms (7 rows) #人为更改执行计划 lottu=# set enable_indexonlyscan = off; SET lottu=# explain (analyze,buffers,verbose) select id from t where id < 10; QUERY PLAN ------------------------------------------------------------------------------------------------------------------ Index Scan using ind_t_id on lottu.t (cost=0.29..8.44 rows=9 width=4) (actual time=0.008..0.014 rows=9 loops=1) Output: id Index Cond: (t.id < 10) Buffers: shared hit=3 Planning time: 0.188 ms Execution time: 0.050 ms (6 rows) # 可以发现两者几乎没有差异;唯一不同的是Indexonlyscan扫描方式存在扫描的Heap Fetches时间。 这个时间是不在Execution time里面的。 2. t表有VM文件 lottu=# delete from t where id >200 and id < 500; DELETE 299 lottu=# vacuum t; VACUUM lottu=# analyze t; ANALYZE lottu=# explain (analyze,buffers,verbose) select id from t where id < 10; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------- Index Only Scan using ind_t_id on lottu.t (cost=0.29..4.44 rows=9 width=4) (actual time=0.008..0.012 rows=9 loops=1) Output: id Index Cond: (t.id < 10) Heap Fetches: 0 Buffers: shared hit=3 Planning time: 0.174 ms Execution time: 0.048 ms (7 rows) lottu=# set enable_indexonlyscan = off; SET lottu=# explain (analyze,buffers,verbose) select id from t where id < 10; QUERY PLAN ------------------------------------------------------------------------------------------------------------------ Index Scan using ind_t_id on lottu.t (cost=0.29..8.44 rows=9 width=4) (actual time=0.012..0.022 rows=9 loops=1) Output: id Index Cond: (t.id < 10) Buffers: shared hit=3 Planning time: 0.179 ms Execution time: 0.077 ms (6 rows)
总结:
- Index Only Scan在没有VM文件的情况下, 速度比Index Scan要慢, 因为要扫描所有的Heap page。差异几乎不大。
- Index Only Scan存在VM文件的情况下,是要比Index Scan要快。
知识点1:
- VM文件:称为可见性映射文件;该文件存在表示:该数据块没有需要清理的行。即已经做了vaccum操作。
知识点2:
人为选择执行计划。可设置enable_xxx参数有
- enable_bitmapscan
- enable_hashagg
- enable_hashjoin
- enable_indexonlyscan
- enable_indexscan
- enable_material
- enable_mergejoin
- enable_nestloop
- enable_seqscan
- enable_sort
- enable_tidscan
参考文献
- 参考德哥:《PostgreSQL 性能优化培训 3 DAY.pdf》
- https://www.postgresql.org/docs/9.6/static/runtime-config-query.html
3. 索引的类型
PostgreSQL 支持索引类型有: B-tree, Hash, GiST, SP-GiST, GIN and BRIN。
- postgresql----Btree索引:http://www.cnblogs.com/alianbog/p/5621749.html
- postgresql----hash索引:一般只用于简单等值查询。不常用。
- postgresql----Gist索引:http://www.cnblogs.com/alianbog/p/5628543.html
4. 索引的管理
4.1 创建索引
创建索引语法:
lottu=# \h create index Command: CREATE INDEX Description: define a new index Syntax: CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ [ IF NOT EXISTS ] name ] ON table_name [ USING method ] ( { column_name | ( expression ) } [ COLLATE collation ] [ opclass ] [ ASC | DESC ] [ NULLS { FIRST | LAST } ] [, ...] ) [ WITH ( storage_parameter = value [, ... ] ) ] [ TABLESPACE tablespace_name ] [ WHERE predicate ] 接下来我们以t表为例。 1. 关键字【UNIQUE】 #创建唯一索引;主键就是一种唯一索引 CREATE UNIQUE INDEX ind_t_id_1 on t (id); 2. 关键字【CONCURRENTLY】 # 这是并发创建索引。跟oracle的online创建索引作用是一样的。创建索引过程中;不会阻塞表更新,插入,删除操作。当然创建的时间就会很漫长。 CREATE INDEX CONCURRENTLY ind_t_id_2 on t (id); 3. 关键字【IF NOT EXISTS】 #用该命令是用于确认索引名是否存在。若存在;也不会报错。 CREATE INDEX IF NOT EXISTS ind_t_id_3 on t (id); 4. 关键字【USING】 # 创建哪种类型的索引。 默认是B-tree。 CREATE INDEX ind_t_id_4 on t using btree (id); 5 关键字【[ ASC | DESC ] [ NULLS { FIRST | LAST]】 # 创建索引是采用降序还是升序。 若字段存在null值,是把null值放在前面还是最后:例如采用降序,null放在前面。 CREATE INDEX ind_t_id_5 on t (id desc nulls first) 6. 关键字【WITH ( storage_parameter = value)】 #索引的填充因子设为。例如创建索引的填充因子设为75 CREATE INDEX ind_t_id_6 on t (id) with (fillfactor = 75); 7. 关键字【TABLESPACE】 #是把索引创建在哪个表空间。 CREATE INDEX ind_t_id_7 on t (id) TABLESPACE tsp_lottu; 8. 关键字【WHERE】 #只在自己感兴趣的那部分数据上创建索引,而不是对每一行数据都创建索引,此种方式创建索引就需要使用WHERE条件了。 CREATE INDEX ind_t_id_8 on t (id) WHERE id < 1000;
4.2 修改索引
修改索引语法
lottu=# \h alter index Command: ALTER INDEX Description: change the definition of an index Syntax: #把索引重新命名 ALTER INDEX [ IF EXISTS ] name RENAME TO new_name #把索引迁移表空间 ALTER INDEX [ IF EXISTS ] name SET TABLESPACE tablespace_name #把索引重设置填充因子 ALTER INDEX [ IF EXISTS ] name SET ( storage_parameter = value [, ... ] ) #把索引的填充因子设置为默认值 ALTER INDEX [ IF EXISTS ] name RESET ( storage_parameter [, ... ] ) #把表空间TSP1中索引迁移到新表空间 ALTER INDEX ALL IN TABLESPACE name [ OWNED BY role_name [, ... ] ] SET TABLESPACE new_tablespace [ NOWAIT ]
4.3 删除索引
删除索引语法
lottu=# \h drop index Command: DROP INDEX Description: remove an index Syntax: DROP INDEX [ CONCURRENTLY ] [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]
5. 索引的维护
索引能带来加快对表中记录的查询,排序,以及唯一约束的作用。索引也是有代价
- 索引需要增加数据库的存储空间。
- 在表记录执行插入,更新,删除操作。索引也要更新。
5.1 查看索引的大小
select pg_size_pretty(pg_relation_size('ind_t_id'));
5.2 索引的利用率
--通过pg_stat_user_indexes.idx_scan可检查利用索引进行扫描的次数;这样可以确认那些索引可以清理掉。 select idx_scan from pg_stat_user_indexes where indexrelname = 'ind_t_id';
5.3 索引的重建
--如果一个表经过频繁更新之后,索引性能不好;需要重建索引。 lottu=# select pg_size_pretty(pg_relation_size('ind_t_id_1')); pg_size_pretty ---------------- 2200 kB (1 row) lottu=# delete from t where id > 1000; DELETE 99000 lottu=# analyze t; ANALYZE lottu=# select pg_size_pretty(pg_relation_size('ind_t_id_1')); pg_size_pretty ---------------- 2200 kB lottu=# insert into t select generate_series(2000,100000),'lottu'; INSERT 0 98001 lottu=# select pg_size_pretty(pg_relation_size('ind_t_id_1')); pg_size_pretty ---------------- 4336 kB (1 row) lottu=# vacuum full t; VACUUM lottu=# select pg_size_pretty(pg_relation_size('ind_t_id_1')); pg_size_pretty ---------------- 2176 kB 重建方法: 1. reindex:reindex不支持并行重建【CONCURRENTLY】;索引会锁表;会进行阻塞。 2. vacuum full; 对表进行重构;索引也会重建;同样也会锁表。 3. 创建一个新索引(索引名不同);再删除旧索引。
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
上一篇:MySQL之单表查询练习
下一篇:电商大数据平台运维案例
- 浅谈 Web框架 2019-08-13
- 10道Python常见面试题 2019-07-24
- 第三章 数据类型之公共功能、小数据池 2019-07-24
- [Python列表]-索引 2019-04-25
- Django—第三方引用 2019-04-18
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash