Hadoop生态圈以及各组成部分的简介
2018-06-17 19:51:18来源:未知 阅读 ()
1.Hadoop是什么?
适合大数据的分布式存储与计算平台
HDFS: Hadoop Distributed File System分布式文件系统
MapReduce:并行计算框架
解决的问题:
HDFS: 海量数据的存储
MapReduce:海量数据的分析
2.Hadoop生态圈
①HBase
Google Bigtable的开源实现
列式数据库
可集群化
可以使用shell、web、api等多种方式访问
适合高读写(insert)的场景
HQL查询语言
NoSQL的典型代表产品
②Hive
数据仓库工具。可以把Hadoop下的原始结构化数据变成Hive中的表
支持一种与SQL几乎完全相同的语言HiveQL。除了不支持更新、索引和事务,几乎SQL的其它特征都能支持
可以看成是从SQL到Map-Reduce的映射器
提供shell、JDBC/ODBC、Thrift、Web等接口
③Zookeeper
Google Chubby的开源实现
用于协调分布式系统上的各种服务。例如确认消息是否准确到达,防止单点失效,处理负载均衡等
应用场景:Hbase,实现Namenode自动切换
工作原理:领导者,跟随者以及选举过程
④Sqoop
用于在Hadoop和关系型数据库之间交换数据
通过JDBC接口连入关系型数据库
⑤Chukwa
架构在Hadoop之上的数据采集与分析框架
主要进行日志采集和分析
通过安装在收集节点的“代理”采集最原始的日志数据
代理将数据发给收集器
收集器定时将数据写入Hadoop集群
指定定时启动的Map-Reduce作业队数据进行加工处理和分析
⑥Pig
Hadoop客户端
使用类似于SQL的面向数据流的语言Pig Latin
Pig Latin可以完成排序,过滤,求和,聚组,关联等操作,可以支持自定义函数
Pig自动把Pig Latin映射为Map-Reduce作业上传到集群运行,减少用户编写Java程序的苦恼
⑦Avro
数据序列化工具,由Hadoop的创始人Doug Cutting主持开发
?用于支持大批量数据交换的应用。支持二进制序列化方式,可以便捷,快速地处理大量数据
?动态语言友好,Avro提供的机制使动态语言可以方便地处理 Avro数据。
?Thrift接口
⑧Cassandra
NoSQL,分布式的Key-Value型数据库,由Facebook贡献
与Hbase类似,也是借鉴Google Bigtable的思想体系
只有顺序写,没有随机写的设计,满足高负荷情形的性能需求
3.Hadoop生态圈流程图
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
上一篇:Sql基础
- 母版和继承的使用以及组件的使用 2019-07-24
- xadmin进行全局配置(修改模块名为中文以及其他自定义的操作 2019-07-24
- python使用matplotlib在一个图形中绘制多个子图以及一个子图 2019-07-24
- 封装查找元素以及集成日志输出,Base模块 2019-07-24
- day01 爬虫基本原理以及requests请求库 2019-07-24
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash