搜索算法基础
2008-04-09 04:02:39来源:互联网 阅读 ()
所有的搜索算法从其最终的算法实现上来看,都可以划分成两个部分──控制结构和产生系统,而所有的算法的优化和改进主要都是通过修改其控制结构来完成的。现在主要对其控制结构进行讨论,因此对其产生系统作如下约定:
Function ExpendNode(Situation:Tsituation;ExpendWayNo:Integer):TSituation;
表示对给出的节点状态Sitution采用第ExpendWayNo种扩展规则进行扩展,并且返回扩展后的状态。
(本文所采用的算法描述语言为类Pascal。)
第一部分 基本搜索算法
一、回溯算法
回溯算法是所有搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”思想作为其控制结构,其相当于采用了先根遍历的方法来构造解答树,可用于找解或所有解以及最优解。具体的算法描述如下:
[非递归算法]
<Type>
Node(节点类型)=Record
Situtation:TSituation(当前节点状态);
Way-NO:Integer(已使用过的扩展规则的数目);
End
<Var>
List(回溯表):Array[1..Max(最大深度)] of Node;
pos(当前扩展节点编号):Integer;
<Init>
List<-0;
pos<-1;
List[1].Situation<-初始状态;
<Main Program>
While (pos>0(有路可走)) and ([未达到目标]) do
Begin
If pos>=Max then (数据溢出,跳出主程序);
List[pos].Way-NO:=List[pos].Way-No 1;
If (List[pos].Way-NO<=TotalExpendMethod) then (如果还有没用过的扩展规则)
Begin
If (可以使用当前扩展规则) then
Begin
(用第way条规则扩展当前节点)
List[pos 1].Situation:=ExpendNode(List[pos].Situation,List[pos].Way-NO);
List[pos 1].Way-NO:=0;
pos:=pos 1;
End-If;
End-If
Else Begin
pos:=pos-1;
End-Else
End-While;
[递归算法]
Procedure BackTrack(Situation:TSituation;deepth:Integer);
Var I :Integer;
Begin
If deepth>Max then (空间达到极限,跳出本过程);
If Situation=Target then (找到目标);
For I:=1 to TotalExpendMethod do
Begin
BackTrack(ExpendNode(Situation,I),deepth 1);
End-For;
End;
范例:一个M*M的棋盘上某一点上有一个马,要求寻找一条从这一点出发不重复的跳完棋盘上所有的点的路线。
评价:回溯算法对空间的消耗较少,当其与分枝定界法一起使用时,对于所求解在解答树中层次较深的问题有较好的效果。但应避免在后继节点可能与前继节点相同的问题中使用,以免产生循环。
二、深度搜索与广度搜索
深度搜索与广度搜索的控制结构和产生系统很相似,唯一的区别在于对扩展节点选取上。由于其保留了所有的前继节点,所以在产生后继节点时可以去掉一部分重复的节点,从而提高了搜索效率。这两种算法每次都扩展一个节点的所有子节点,而不同的是,深度搜索下一次扩展的是本次扩展出来的子节点中的一个,而广度搜索扩展的则是本次扩展的节点的兄弟节点。在具体实现上为了提高效率,所以采用了不同的数据结构.
[广度搜索]
<Type>
Node(节点类型)=Record
Situtation:TSituation(当前节点状态);
Level:Integer(当前节点深度);
Last :Integer(父节点);
End
<Var>
List(节点表):Array[1..Max(最多节点数)] of Node(节点类型);
open(总节点数):Integer;
close(待扩展节点编号):Integer;
New-S:TSituation;(新节点)
<Init>
List<-0;
open<-1;
close<-0;
List[1].Situation<- 初始状态;
List[1].Level:=1;
List[1].Last:=0;
<Main Program>
While (close<open(还有未扩展节点)) and
(open<Max(空间未用完)) and
(未找到目标节点) do
Begin
close:=close 1;
For I:=1 to TotalExpendMethod do(扩展一层子节点)
Begin
New-S:=ExpendNode(List[close].Situation,I);
If Not (New-S in List) then
(扩展出的节点从未出现过)
Begin
open:=open 1;
List[open].Situation:=New-S;
List[open].Level:=List[close].Level 1;
List[open].Last:=close;
End-If
End-For;
End-While;
[深度搜索]
<Var>
Open:Array[1..Max] of Node;(待扩展节点表)
Close:Array[1..Max] of Node;(已扩展节点表)
openL,closeL:Integer;(表的长度)
New-S:Tsituation;(新状态)
<Init>
Open<-0; Close<-0;
OpenL<-1;CloseL<-0;
Open[1].Situation<- 初始状态;
Open[1].Level<-1;
Open[1].Last<-0;
<Main Program>
While (openL>0) and (closeL<Max) and (openL<Max) do
Begin
closeL:=closeL 1;
Close[closeL]:=Open[openL];
openL:=openL-1;
For I:=1 to TotalExpendMethod do(扩展一层子节点)
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
上一篇:数据结构与算法总论
下一篇:面向对象分布式开发系统理论篇
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash