稀疏矩阵类
2020-06-09 16:00:25来源:博客园 阅读 ()
稀疏矩阵类
稀疏矩阵类
Design a class Sparse that implements interface Matrix: Sparse should has the following public object functions in addition:
- A constructor Sparse(int rows, int column), which initializes all elements in the matrix to 0's.
- A function Sparse Sparse::operator + (Sparse & sparse2), which returns the pair-wise sum of two sparse matrixes.
- A function Sparse Sparse::operator * (Sparse & sparse2), which returns the product of two sparse matrixes.
HINT
稀疏矩阵是大多数元素都为0的矩阵。
因此,存储稀疏矩阵的时候只存储不为0的元素可以节省空间。
例如,完整地存储一个1000000 * 1000000的浮点数矩阵需要8 TB的内存。
但是,如果矩阵只有10个非0元素,那么我们只需记录这10个元素在矩阵中的位置和值。
要记录这10个元素中的每一个,我们可以使用一个3元组(行,列,值),这个3元组的类Entry已经在主程序定义好。
要记录这10个元素,我们可以用一个vector存储10个Entry的对象。
要获得这10个非0元素的值,只需查找这个vector。
位置(行,列)不在这个vector中的元素,就是值为0的元素。
题目中要求实现的print函数,只输出非0元素(的3元组表示)。顺序为小行优先,同行则小列优先。
例如:
A、B都是1000000*1000000的矩阵
矩阵A:
(1,1,10)
(1,2000000,50)
(1000000,2000000,20)
矩阵B:
(1,3000000,30)
(2000000,1,40)
(1,1,-10)
C是1000000*2000000的矩阵
D是2000000*3000000的矩阵
矩阵C:
(1,1,10)
(1,2000000,50)
(1000000,2000000,20)
矩阵D:
(1,3000000,30)
(2000000,1,40)
(1,1,-10)
A+B得:
(1,1000000,80)
(1000000,1,40)
(1000000,1000000,20)
C*D得:
(1,1,1900)
(1,3000000,300)
(1000000,1,800)
#include<vector>
#include<algorithm>
#include <iostream>
using namespace std;
class Entry
{
public:
int row;
int column;
double value;
};
class Matrix
{
public:
virtual int size(int dimension) const = 0;
virtual void set(int row, int column,
double value) = 0;
virtual double get(int row, int column)
const = 0;
virtual void print() = 0;
};
bool Comp1(const Entry &a,const Entry &b)
{
return a.row<b.row;
}
bool Comp2(const Entry &a,const Entry &b)
{
return (a.row==b.row&&a.column<b.column);
}
class Sparse : public Matrix
{
private:
int _rows, _columns;
vector<Entry> entry;
public:
Sparse(int rows, int column)
{
_rows = rows;
_columns = column;
entry = vector<Entry>();
}
int size(int dimension) const
{
if(dimension == 1) return _rows;
if(dimension == 2) return _columns;
}
void set(int row, int column, double value)
{
Entry e;
e.row = row;
e.column = column;
e.value = value;
entry.push_back(e);
}
double get(int row, int column) const
{
for(int i=0; i < entry.size();i++)
{
if(entry[i].row == row
&& entry[i].column == column ){
return entry[i].value;
}
}
}
void print()
{
for(int i=0; i < entry.size();i++)
{
cout<<"("<<entry[i].row<<","<<entry[i].column<<","
<<entry[i].value<<")\n";
}
}
//稀疏矩阵的 加法运算
Sparse operator + (Sparse & sparse2)
{
Sparse s(_rows, _columns);
for(int i=0; i < this->entry.size(); i++)
{
for(int j = 0 ;j< sparse2.entry.size(); j++)
{
if(this->entry[i].row == sparse2.entry[j].row
&& this->entry[i].column == sparse2.entry[j].column){
Entry e;
e.row = sparse2.entry[j].row;
e.column = sparse2.entry[j].column;
e.value = this->entry[i].value + sparse2.entry[j].value;
if(e.value)
s.entry.push_back(e);
this->entry[i].value = 0;
sparse2.entry[j].value = 0;
}
}
}
for(int i=0; i < this->entry.size(); i++)
{
Entry e;
e.row = this->entry[i].row;
e.column = this->entry[i].column;
e.value = this->entry[i].value;
if(e.value)
s.entry.push_back(e);
}
for(int i=0; i < sparse2.entry.size(); i++)
{
Entry e;
e.row = sparse2.entry[i].row;
e.column = sparse2.entry[i].column;
e.value = sparse2.entry[i].value;
if(e.value)
s.entry.push_back(e);
}
sort(s.entry.begin(),s.entry.end(),Comp1);
sort(s.entry.begin(),s.entry.end(),Comp2);
return s;
}
};
//稀疏矩阵的 乘法运算
Sparse operator * (Sparse & sparse2)
{
Sparse s(_rows, sparse2._columns);
for(int i=0; i < this->entry.size(); i++)
{
for(int j = 0 ;j< sparse2.entry.size(); j++)
{
if(this->entry[i].column == sparse2.entry[j].row ){
Entry e;
e.row =this->entry[i].row;
e.column = sparse2.entry[j].column;
e.value = this->entry[i].value * sparse2.entry[j].value;
int isIns = 0;
int index = -1;
for(int k = 0 ; k < s.entry.size();k++){
if(s.entry[k].row == e.row && s.entry[k].column == e.column){
isIns = 1;
index = k;
}
}
if(e.value && isIns == 0)
s.entry.push_back(e);
if(e.value && isIns == 1){
s.entry[index].value += e.value;
}
}
}
}
sort(s.entry.begin(),s.entry.end(),Comp1);
sort(s.entry.begin(),s.entry.end(),Comp2);
return s;
}
void print(Matrix & matrix) {
matrix.print();
}
void readAndSetElement(Matrix & matrix) {
int row;
int column;
double value;
cin >> row >> column >> value;
matrix.set(row, column, value);
}
void readAndSetMultipleElements(Matrix & matrix, int count) {
for (int i = 0; i < count; ++ i) {
readAndSetElement(matrix);
}
}
int main() {
int rows;
int columns;
cin >> rows >> columns;
Sparse sparse1(rows, columns);
readAndSetMultipleElements(sparse1, 3);
Sparse sparse2(rows, columns);
readAndSetMultipleElements(sparse2, 3);
Sparse sparse3 = sparse1 + sparse2;
print(sparse3);
}
原文链接:https://www.cnblogs.com/miaomiaolan/p/13071965.html
如有疑问请与原作者联系
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
下一篇:QT5 解析JSON文件
- 重载矩阵加法运算 代码参考 2020-04-29
- 螺旋矩阵问题 2020-04-18
- 给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的 2020-04-15
- 快速幂与矩阵快速幂 2020-01-27
- 快速幂与矩阵快速幂 2020-01-26
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash