利用ZYNQ SOC快速打开算法验证通路(4)——AXI …

2018-12-04 07:13:45来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

一、AXI DMA介绍

  本篇博文讲述AXI DMA的一些使用总结,硬件IP子系统搭建与SDK C代码封装参考米联客ZYNQ教程。若想让ZYNQ的PS与PL两部分高速数据传输,需要利用PS的HP(高性能)接口通过AXI_DMA完成数据搬移,这正符合PG021 AXI DMA v7.1 LogiCORE IP Product Guide中介绍的AXI DMA的应用场景:The AXI DMA provides high-speed data movement between system memory and an AXI4-Stream-based target IP such as AXI Ethernet.

  如图,AXI DMA主要包括Memory Map和 Stream两部分接口,前者连接PS子系统,后者则连接带有流接口的PL IP核。

  其最简单的事直接寄存器模式(Simple DMA),这里需要注意地址对齐的问题:当没有使能地址重对齐的情况下,如果AXI Memory Map数据位宽是32bit,则搬移数据所在地址必须在0x0,0x4,0x8等起始地址上。接下来关注DMA IP核配置界面主要参数:

  AXI DMA可以有两个传输方向:读通道和写通道,依次为MM2S和S2MM方向。也就是说“读”和“写”是DMA主动对CPU发起的操作。重点查看以下几个参数:

1 Width of Buffer Length Register:

  在直接寄存器模式下,它指定在MM2S_LENGTH和S2MM_LENGTH寄存器的有效比特数。MM2S_LENGTH寄存器指定了MM2S通道传输数据字节数,当CPU写入非零值时开始进行PS到PL的数据搬移,而S2MM_LENGTH对应另一个数据流方向。比特数直接与对应寄存器可写入的最大数直接相关,传输最大字节数= 2^(Width of Buffer Length Register)。此处保持默认14bit,也就是说启动DMA传输的最大数据量是16384byte。

2 Memory Map Data Width:

  该参数指定了Memory Map侧数据接口宽度,选定32bit后搬移数据所在内存地址必须与4对齐。

3 Max Burst Size:

  之前在讲解PS子系统内部的DMA时介绍过DMA的Burst概念,即分批次传输数据块。官方IP核文档解释为:

  理解起来burst size确定了突发周期的最大数值,也就是burst size越大,突发粒度越大(单次传输的数据个数越多)。这与PS端DMA有所区别,显然与 PS DMA的burst length意义相近。笔者也进行过尝试,当启动传输数据量相同时,burst size设置较大情况下,每批次传输数据量更多。

 二、AXI DMA Loop IP子系统

  在利用ZYNQ搭建系统时,经常需要利用各种IP核做所谓的“计算加速”,将重复性高 计算量大 占用较大CPU资源的底层处理交给各个IP核完成。这时PS ->DMA ->PL -> DMA -> PS的环路架构非常适用。这里使用AXI Stream Data FIFO代替自定义IP核作为演示,硬件IP子系统如下:

 三、SDK 官方demo解析

  首先分析下官方的demo。

  1 /******************************************************************************
  2 *
  3 * Copyright (C) 2010 - 2016 Xilinx, Inc.  All rights reserved.
  4 *
  5 * Permission is hereby granted, free of charge, to any person obtaining a copy
  6 * of this software and associated documentation files (the "Software"), to deal
  7 * in the Software without restriction, including without limitation the rights
  8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9 * copies of the Software, and to permit persons to whom the Software is
 10 * furnished to do so, subject to the following conditions:
 11 *
 12 * The above copyright notice and this permission notice shall be included in
 13 * all copies or substantial portions of the Software.
 14 *
 15 * Use of the Software is limited solely to applications:
 16 * (a) running on a Xilinx device, or
 17 * (b) that interact with a Xilinx device through a bus or interconnect.
 18 *
 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 22 * XILINX  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 23 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
 24 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 25 * SOFTWARE.
 26 *
 27 * Except as contained in this notice, the name of the Xilinx shall not be used
 28 * in advertising or otherwise to promote the sale, use or other dealings in
 29 * this Software without prior written authorization from Xilinx.
 30 *
 31 ******************************************************************************/
 32 /*****************************************************************************/
 33 /**
 34  *
 35  * @file xaxidma_example_simple_intr.c
 36  *
 37  * This file demonstrates how to use the xaxidma driver on the Xilinx AXI
 38  * DMA core (AXIDMA) to transfer packets.in interrupt mode when the AXIDMA core
 39  * is configured in simple mode
 40  *
 41  * This code assumes a loopback hardware widget is connected to the AXI DMA
 42  * core for data packet loopback.
 43  *
 44  * To see the debug print, you need a Uart16550 or uartlite in your system,
 45  * and please set "-DDEBUG" in your compiler options. You need to rebuild your
 46  * software executable.
 47  *
 48  * Make sure that MEMORY_BASE is defined properly as per the HW system. The
 49  * h/w system built in Area mode has a maximum DDR memory limit of 64MB. In
 50  * throughput mode, it is 512MB.  These limits are need to ensured for
 51  * proper operation of this code.
 52  *
 53  *
 54  * <pre>
 55  * MODIFICATION HISTORY:
 56  *
 57  * Ver   Who  Date     Changes
 58  * ----- ---- -------- -------------------------------------------------------
 59  * 4.00a rkv  02/22/11 New example created for simple DMA, this example is for
 60  *                  simple DMA,Added interrupt support for Zynq.
 61  * 4.00a srt  08/04/11 Changed a typo in the RxIntrHandler, changed
 62  *               XAXIDMA_DMA_TO_DEVICE to XAXIDMA_DEVICE_TO_DMA
 63  * 5.00a srt  03/06/12 Added Flushing and Invalidation of Caches to fix CRs
 64  *               648103, 648701.
 65  *               Added V7 DDR Base Address to fix CR 649405.
 66  * 6.00a srt  03/27/12 Changed API calls to support MCDMA driver.
 67  * 7.00a srt  06/18/12 API calls are reverted back for backward compatibility.
 68  * 7.01a srt  11/02/12 Buffer sizes (Tx and Rx) are modified to meet maximum
 69  *               DDR memory limit of the h/w system built with Area mode
 70  * 7.02a srt  03/01/13 Updated DDR base address for IPI designs (CR 703656).
 71  * 9.1   adk  01/07/16 Updated DDR base address for Ultrascale (CR 799532) and
 72  *               removed the defines for S6/V6.
 73  * 9.2   vak  15/04/16 Fixed compilation warnings in the example
 74  * </pre>
 75  *
 76  * ***************************************************************************
 77  */
 78 
 79 /***************************** Include Files *********************************/
 80 
 81 #include "xaxidma.h"
 82 #include "xparameters.h"
 83 #include "xil_exception.h"
 84 #include "xdebug.h"
 85 
 86 #ifdef XPAR_UARTNS550_0_BASEADDR
 87 #include "xuartns550_l.h"       /* to use uartns550 */
 88 #endif
 89 
 90 
 91 #ifdef XPAR_INTC_0_DEVICE_ID
 92  #include "xintc.h"
 93 #else
 94  #include "xscugic.h"
 95 #endif
 96 
 97 /************************** Constant Definitions *****************************/
 98 
 99 /*
100  * Device hardware build related constants.
101  */
102 
103 #define DMA_DEV_ID        XPAR_AXIDMA_0_DEVICE_ID
104 
105 #ifdef XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
106 #define DDR_BASE_ADDR        XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
107 #elif XPAR_MIG7SERIES_0_BASEADDR
108 #define DDR_BASE_ADDR    XPAR_MIG7SERIES_0_BASEADDR
109 #elif XPAR_MIG_0_BASEADDR
110 #define DDR_BASE_ADDR    XPAR_MIG_0_BASEADDR
111 #elif XPAR_PSU_DDR_0_S_AXI_BASEADDR
112 #define DDR_BASE_ADDR    XPAR_PSU_DDR_0_S_AXI_BASEADDR
113 #endif
114 
115 #ifndef DDR_BASE_ADDR
116 #warning CHECK FOR THE VALID DDR ADDRESS IN XPARAMETERS.H, \
117         DEFAULT SET TO 0x01000000
118 #define MEM_BASE_ADDR        0x01000000
119 #else
120 #define MEM_BASE_ADDR        (DDR_BASE_ADDR + 0x1000000)
121 #endif
122 
123 #ifdef XPAR_INTC_0_DEVICE_ID
124 #define RX_INTR_ID        XPAR_INTC_0_AXIDMA_0_S2MM_INTROUT_VEC_ID
125 #define TX_INTR_ID        XPAR_INTC_0_AXIDMA_0_MM2S_INTROUT_VEC_ID
126 #else
127 #define RX_INTR_ID        XPAR_FABRIC_AXIDMA_0_S2MM_INTROUT_VEC_ID
128 #define TX_INTR_ID        XPAR_FABRIC_AXIDMA_0_MM2S_INTROUT_VEC_ID
129 #endif
130 
131 #define TX_BUFFER_BASE        (MEM_BASE_ADDR + 0x00100000)
132 #define RX_BUFFER_BASE        (MEM_BASE_ADDR + 0x00300000)
133 #define RX_BUFFER_HIGH        (MEM_BASE_ADDR + 0x004FFFFF)
134 
135 #ifdef XPAR_INTC_0_DEVICE_ID
136 #define INTC_DEVICE_ID          XPAR_INTC_0_DEVICE_ID
137 #else
138 #define INTC_DEVICE_ID          XPAR_SCUGIC_SINGLE_DEVICE_ID
139 #endif
140 
141 #ifdef XPAR_INTC_0_DEVICE_ID
142  #define INTC        XIntc
143  #define INTC_HANDLER    XIntc_InterruptHandler
144 #else
145  #define INTC        XScuGic
146  #define INTC_HANDLER    XScuGic_InterruptHandler
147 #endif
148 
149 
150 /* Timeout loop counter for reset
151  */
152 #define RESET_TIMEOUT_COUNTER    10000
153 
154 #define TEST_START_VALUE    0xC
155 /*
156  * Buffer and Buffer Descriptor related constant definition
157  */
158 #define MAX_PKT_LEN        0x100
159 
160 #define NUMBER_OF_TRANSFERS    10
161 
162 /* The interrupt coalescing threshold and delay timer threshold
163  * Valid range is 1 to 255
164  *
165  * We set the coalescing threshold to be the total number of packets.
166  * The receive side will only get one completion interrupt for this example.
167  */
168 
169 /**************************** Type Definitions *******************************/
170 
171 
172 /***************** Macros (Inline Functions) Definitions *********************/
173 
174 
175 /************************** Function Prototypes ******************************/
176 #ifndef DEBUG
177 extern void xil_printf(const char *format, ...);
178 #endif
179 
180 #ifdef XPAR_UARTNS550_0_BASEADDR
181 static void Uart550_Setup(void);
182 #endif
183 
184 static int CheckData(int Length, u8 StartValue);
185 static void TxIntrHandler(void *Callback);
186 static void RxIntrHandler(void *Callback);
187 
188 
189 
190 
191 static int SetupIntrSystem(INTC * IntcInstancePtr,
192                XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId);
193 static void DisableIntrSystem(INTC * IntcInstancePtr,
194                     u16 TxIntrId, u16 RxIntrId);
195 
196 
197 
198 /************************** Variable Definitions *****************************/
199 /*
200  * Device instance definitions
201  */
202 
203 
204 static XAxiDma AxiDma;        /* Instance of the XAxiDma */
205 
206 static INTC Intc;    /* Instance of the Interrupt Controller */
207 
208 /*
209  * Flags interrupt handlers use to notify the application context the events.
210  */
211 volatile int TxDone;
212 volatile int RxDone;
213 volatile int Error;
214 
215 /*****************************************************************************/
216 /**
217 *
218 * Main function
219 *
220 * This function is the main entry of the interrupt test. It does the following:
221 *    Set up the output terminal if UART16550 is in the hardware build
222 *    Initialize the DMA engine
223 *    Set up Tx and Rx channels
224 *    Set up the interrupt system for the Tx and Rx interrupts
225 *    Submit a transfer
226 *    Wait for the transfer to finish
227 *    Check transfer status
228 *    Disable Tx and Rx interrupts
229 *    Print test status and exit
230 *
231 * @param    None
232 *
233 * @return
234 *        - XST_SUCCESS if example finishes successfully
235 *        - XST_FAILURE if example fails.
236 *
237 * @note        None.
238 *
239 ******************************************************************************/
240 int main(void)
241 {
242     int Status;
243     XAxiDma_Config *Config;
244     int Tries = NUMBER_OF_TRANSFERS;
245     int Index;
246     u8 *TxBufferPtr;
247     u8 *RxBufferPtr;
248     u8 Value;
249 
250     TxBufferPtr = (u8 *)TX_BUFFER_BASE ;
251     RxBufferPtr = (u8 *)RX_BUFFER_BASE;
252     /* Initial setup for Uart16550 */
253 #ifdef XPAR_UARTNS550_0_BASEADDR
254 
255     Uart550_Setup();
256 
257 #endif
258 
259     xil_printf("\r\n--- Entering main() --- \r\n");
260 
261     Config = XAxiDma_LookupConfig(DMA_DEV_ID);
262     if (!Config) {
263         xil_printf("No config found for %d\r\n", DMA_DEV_ID);
264 
265         return XST_FAILURE;
266     }
267 
268     /* Initialize DMA engine */
269     Status = XAxiDma_CfgInitialize(&AxiDma, Config);
270 
271     if (Status != XST_SUCCESS) {
272         xil_printf("Initialization failed %d\r\n", Status);
273         return XST_FAILURE;
274     }
275 
276     if(XAxiDma_HasSg(&AxiDma)){
277         xil_printf("Device configured as SG mode \r\n");
278         return XST_FAILURE;
279     }
280 
281     /* Set up Interrupt system  */
282     Status = SetupIntrSystem(&Intc, &AxiDma, TX_INTR_ID, RX_INTR_ID);
283     if (Status != XST_SUCCESS) {
284 
285         xil_printf("Failed intr setup\r\n");
286         return XST_FAILURE;
287     }
288 
289     /* Disable all interrupts before setup */
290 
291     XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
292                         XAXIDMA_DMA_TO_DEVICE);
293 
294     XAxiDma_IntrDisable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
295                 XAXIDMA_DEVICE_TO_DMA);
296 
297     /* Enable all interrupts */
298     XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
299                             XAXIDMA_DMA_TO_DEVICE);
300 
301 
302     XAxiDma_IntrEnable(&AxiDma, XAXIDMA_IRQ_ALL_MASK,
303                             XAXIDMA_DEVICE_TO_DMA);
304 
305     /* Initialize flags before start transfer test  */
306     TxDone = 0;
307     RxDone = 0;
308     Error = 0;
309 
310     Value = TEST_START_VALUE;
311 
312     for(Index = 0; Index < MAX_PKT_LEN; Index ++) {
313             TxBufferPtr[Index] = Value;
314 
315             Value = (Value + 1) & 0xFF;
316     }
317 
318     /* Flush the SrcBuffer before the DMA transfer, in case the Data Cache
319      * is enabled
320      */
321     Xil_DCacheFlushRange((UINTPTR)TxBufferPtr, MAX_PKT_LEN);
322 #ifdef __aarch64__
323     Xil_DCacheFlushRange((UINTPTR)RxBufferPtr, MAX_PKT_LEN);
324 #endif
325 
326     /* Send a packet */
327     for(Index = 0; Index < Tries; Index ++) {
328 
329         Status = XAxiDma_SimpleTransfer(&AxiDma,(UINTPTR) RxBufferPtr,
330                     MAX_PKT_LEN, XAXIDMA_DEVICE_TO_DMA);
331 
332         if (Status != XST_SUCCESS) {
333             return XST_FAILURE;
334         }
335 
336         Status = XAxiDma_SimpleTransfer(&AxiDma,(UINTPTR) TxBufferPtr,
337                     MAX_PKT_LEN, XAXIDMA_DMA_TO_DEVICE);
338 
339         if (Status != XST_SUCCESS) {
340             return XST_FAILURE;
341         }
342 
343 
344         /*
345          * Wait TX done and RX done
346          */
347         while (!TxDone && !RxDone && !Error) {
348                 /* NOP */
349         }
350 
351         if (Error) {
352             xil_printf("Failed test transmit%s done, "
353             "receive%s done\r\n", TxDone? "":" not",
354                             RxDone? "":" not");
355 
356             goto Done;
357 
358         }
359 
360         /*
361          * Test finished, check data
362          */
363         Status = CheckData(MAX_PKT_LEN, 0xC);
364         if (Status != XST_SUCCESS) {
365             xil_printf("Data check failed\r\n");
366             goto Done;
367         }
368     }
369 
370 
371     xil_printf("AXI DMA interrupt example test passed\r\n");
372 
373 
374     /* Disable TX and RX Ring interrupts and return success */
375 
376     DisableIntrSystem(&Intc, TX_INTR_ID, RX_INTR_ID);
377 
378 Done:
379     xil_printf("--- Exiting main() --- \r\n");
380 
381     return XST_SUCCESS;
382 }
383 
384 #ifdef XPAR_UARTNS550_0_BASEADDR
385 /*****************************************************************************/
386 /*
387 *
388 * Uart16550 setup routine, need to set baudrate to 9600 and data bits to 8
389 *
390 * @param    None
391 *
392 * @return    None
393 *
394 * @note        None.
395 *
396 ******************************************************************************/
397 static void Uart550_Setup(void)
398 {
399 
400     XUartNs550_SetBaud(XPAR_UARTNS550_0_BASEADDR,
401             XPAR_XUARTNS550_CLOCK_HZ, 9600);
402 
403     XUartNs550_SetLineControlReg(XPAR_UARTNS550_0_BASEADDR,
404             XUN_LCR_8_DATA_BITS);
405 }
406 #endif
407 
408 /*****************************************************************************/
409 /*
410 *
411 * This function checks data buffer after the DMA transfer is finished.
412 *
413 * We use the static tx/rx buffers.
414 *
415 * @param    Length is the length to check
416 * @param    StartValue is the starting value of the first byte
417 *
418 * @return
419 *        - XST_SUCCESS if validation is successful
420 *        - XST_FAILURE if validation is failure.
421 *
422 * @note        None.
423 *
424 ******************************************************************************/
425 static int CheckData(int Length, u8 StartValue)
426 {
427     u8 *RxPacket;
428     int Index = 0;
429     u8 Value;
430 
431     RxPacket = (u8 *) RX_BUFFER_BASE;
432     Value = StartValue;
433 
434     /* Invalidate the DestBuffer before receiving the data, in case the
435      * Data Cache is enabled
436      */
437 #ifndef __aarch64__
438     Xil_DCacheInvalidateRange((u32)RxPacket, Length);
439 #endif
440 
441     for(Index = 0; Index < Length; Index++) {
442         if (RxPacket[Index] != Value) {
443             xil_printf("Data error %d: %x/%x\r\n",
444                 Index, RxPacket[Index], Value);
445 
446             return XST_FAILURE;
447         }
448         Value = (Value + 1) & 0xFF;
449     }
450 
451     return XST_SUCCESS;
452 }
453 
454 /*****************************************************************************/
455 /*
456 *
457 * This is the DMA TX Interrupt handler function.
458 *
459 * It gets the interrupt status from the hardware, acknowledges it, and if any
460 * error happens, it resets the hardware. Otherwise, if a completion interrupt
461 * is present, then sets the TxDone.flag
462 *
463 * @param    Callback is a pointer to TX channel of the DMA engine.
464 *
465 * @return    None.
466 *
467 * @note        None.
468 *
469 ******************************************************************************/
470 static void TxIntrHandler(void *Callback)
471 {
472 
473     u32 IrqStatus;
474     int TimeOut;
475     XAxiDma *AxiDmaInst = (XAxiDma *)Callback;
476 
477     /* Read pending interrupts */
478     IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DMA_TO_DEVICE);
479 
480     /* Acknowledge pending interrupts */
481 
482 
483     XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DMA_TO_DEVICE);
484 
485     /*
486      * If no interrupt is asserted, we do not do anything
487      */
488     if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
489 
490         return;
491     }
492 
493     /*
494      * If error interrupt is asserted, raise error flag, reset the
495      * hardware to recover from the error, and return with no further
496      * processing.
497      */
498     if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {
499 
500         Error = 1;
501 
502         /*
503          * Reset should never fail for transmit channel
504          */
505         XAxiDma_Reset(AxiDmaInst);
506 
507         TimeOut = RESET_TIMEOUT_COUNTER;
508 
509         while (TimeOut) {
510             if (XAxiDma_ResetIsDone(AxiDmaInst)) {
511                 break;
512             }
513 
514             TimeOut -= 1;
515         }
516 
517         return;
518     }
519 
520     /*
521      * If Completion interrupt is asserted, then set the TxDone flag
522      */
523     if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {
524 
525         TxDone = 1;
526     }
527 }
528 
529 /*****************************************************************************/
530 /*
531 *
532 * This is the DMA RX interrupt handler function
533 *
534 * It gets the interrupt status from the hardware, acknowledges it, and if any
535 * error happens, it resets the hardware. Otherwise, if a completion interrupt
536 * is present, then it sets the RxDone flag.
537 *
538 * @param    Callback is a pointer to RX channel of the DMA engine.
539 *
540 * @return    None.
541 *
542 * @note        None.
543 *
544 ******************************************************************************/
545 static void RxIntrHandler(void *Callback)
546 {
547     u32 IrqStatus;
548     int TimeOut;
549     XAxiDma *AxiDmaInst = (XAxiDma *)Callback;
550 
551     /* Read pending interrupts */
552     IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DEVICE_TO_DMA);
553 
554     /* Acknowledge pending interrupts */
555     XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DEVICE_TO_DMA);
556 
557     /*
558      * If no interrupt is asserted, we do not do anything
559      */
560     if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
561         return;
562     }
563 
564     /*
565      * If error interrupt is asserted, raise error flag, reset the
566      * hardware to recover from the error, and return with no further
567      * processing.
568      */
569     if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {
570 
571         Error = 1;
572 
573         /* Reset could fail and hang
574          * NEED a way to handle this or do not call it??
575          */
576         XAxiDma_Reset(AxiDmaInst);
577 
578         TimeOut = RESET_TIMEOUT_COUNTER;
579 
580         while (TimeOut) {
581             if(XAxiDma_ResetIsDone(AxiDmaInst)) {
582                 break;
583             }
584 
585             TimeOut -= 1;
586         }
587 
588         return;
589     }
590 
591     /*
592      * If completion interrupt is asserted, then set RxDone flag
593      */
594     if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {
595 
596         RxDone = 1;
597     }
598 }
599 
600 /*****************************************************************************/
601 /*
602 *
603 * This function setups the interrupt system so interrupts can occur for the
604 * DMA, it assumes INTC component exists in the hardware system.
605 *
606 * @param    IntcInstancePtr is a pointer to the instance of the INTC.
607 * @param    AxiDmaPtr is a pointer to the instance of the DMA engine
608 * @param    TxIntrId is the TX channel Interrupt ID.
609 * @param    RxIntrId is the RX channel Interrupt ID.
610 *
611 * @return
612 *        - XST_SUCCESS if successful,
613 *        - XST_FAILURE.if not succesful
614 *
615 * @note        None.
616 *
617 ******************************************************************************/
618 static int SetupIntrSystem(INTC * IntcInstancePtr,
619                XAxiDma * AxiDmaPtr, u16 TxIntrId, u16 RxIntrId)
620 {
621     int Status;
622 
623 #ifdef XPAR_INTC_0_DEVICE_ID
624 
625     /* Initialize the interrupt controller and connect the ISRs */
626     Status = XIntc_Initialize(IntcInstancePtr, INTC_DEVICE_ID);
627     if (Status != XST_SUCCESS) {
628 
629         xil_printf("Failed init intc\r\n");
630         return XST_FAILURE;
631     }
632 
633     Status = XIntc_Connect(IntcInstancePtr, TxIntrId,
634                    (XInterruptHandler) TxIntrHandler, AxiDmaPtr);
635     if (Status != XST_SUCCESS) {
636 
637         xil_printf("Failed tx connect intc\r\n");
638         return XST_FAILURE;
639     }
640 
641     Status = XIntc_Connect(IntcInstancePtr, RxIntrId,
642                    (XInterruptHandler) RxIntrHandler, AxiDmaPtr);
643     if (Status != XST_SUCCESS) {
644 
645         xil_printf("Failed rx connect intc\r\n");
646         return XST_FAILURE;
647     }
648 
649     /* Start the interrupt controller */
650     Status = XIntc_Start(IntcInstancePtr, XIN_REAL_MODE);
651     if (Status != XST_SUCCESS) {
652 
653         xil_printf("Failed to start intc\r\n");
654         return XST_FAILURE;
655     }
656 
657     XIntc_Enable(IntcInstancePtr, TxIntrId);
658     XIntc_Enable(IntcInstancePtr, RxIntrId);
659 
660 #else
661 
662     XScuGic_Config *IntcConfig;
663 
664 
665     /*
666      * Initialize the interrupt controller driver so that it is ready to
667      * use.
668      */
669     IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);
670     if (NULL == IntcConfig) {
671         return XST_FAILURE;
672     }
673 
674     Status = XScuGic_CfgInitialize(IntcInstancePtr, IntcConfig,
675                     IntcConfig->CpuBaseAddress);
676     if (Status != XST_SUCCESS) {
677         return XST_FAILURE;
678     }
679 
680 
681     XScuGic_SetPriorityTriggerType(IntcInstancePtr, TxIntrId, 0xA0, 0x3);
682 
683     XScuGic_SetPriorityTriggerType(IntcInstancePtr, RxIntrId, 0xA0, 0x3);
684     /*
685      * Connect the device driver handler that will be called when an
686      * interrupt for the device occurs, the handler defined above performs
687      * the specific interrupt processing for the device.
688      */
689     Status = XScuGic_Connect(IntcInstancePtr, TxIntrId,
690                 (Xil_InterruptHandler)TxIntrHandler,
691                 AxiDmaPtr);
692     if (Status != XST_SUCCESS) {
693         return Status;
694     }
695 
696     Status = XScuGic_Connect(IntcInstancePtr, RxIntrId,
697                 (Xil_InterruptHandler)RxIntrHandler,
698                 AxiDmaPtr);
699     if (Status != XST_SUCCESS) {
700         return Status;
701     }
702 
703     XScuGic_Enable(IntcInstancePtr, TxIntrId);
704     XScuGic_Enable(IntcInstancePtr, RxIntrId);
705 
706 
707 #endif
708 
709     /* Enable interrupts from the hardware */
710 
711     Xil_ExceptionInit();
712     Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
713             (Xil_ExceptionHandler)INTC_HANDLER,
714             (void *)IntcInstancePtr);
715 
716     Xil_ExceptionEnable();
717 
718     return XST_SUCCESS;
719 }
720 
721 /*****************************************************************************/
722 /**
723 *
724 * This function disables the interrupts for DMA engine.
725 *
726 * @param    IntcInstancePtr is the pointer to the INTC component instance
727 * @param    TxIntrId is interrupt ID associated w/ DMA TX channel
728 * @param    RxIntrId is interrupt ID associated w/ DMA RX channel
729 *
730 * @return    None.
731 *
732 * @note        None.
733 *
734 ******************************************************************************/
735 static void DisableIntrSystem(INTC * IntcInstancePtr,
736                     u16 TxIntrId, u16 RxIntrId)
737 {
738 #ifdef XPAR_INTC_0_DEVICE_ID
739     /* Disconnect the interrupts for the DMA TX and RX channels */
740     XIntc_Disconnect(IntcInstancePtr, TxIntrId);
741     XIntc_Disconnect(IntcInstancePtr, RxIntrId);
742 #else
743     XScuGic_Disconnect(IntcInstancePtr, TxIntrId);
744     XScuGic_Disconnect(IntcInstancePtr, RxIntrId);
745 #endif
746 }
xaxidma_example_simple_intr.c

 主函数中依次完成了:DMA初始化,建立中断系统,使能DMA中断,初始化标志位及发送数据,启动DMA传输以及数据检测。中断部分的内容与PS DMA非常相近,传输完成后进入的中断函数中仅置位了发送或接收完成标志位:

  1 static void TxIntrHandler(void *Callback)
  2 {
  3 
  4     u32 IrqStatus;
  5     int TimeOut;
  6     XAxiDma *AxiDmaInst = (XAxiDma *)Callback;
  7 
  8     /* Read pending interrupts */
  9     IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DMA_TO_DEVICE);
 10 
 11     /* Acknowledge pending interrupts */
 12 
 13 
 14     XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DMA_TO_DEVICE);
 15 
 16     /*
 17      * If no interrupt is asserted, we do not do anything
 18      */
 19     if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
 20 
 21         return;
 22     }
 23 
 24     /*
 25      * If error interrupt is asserted, raise error flag, reset the
 26      * hardware to recover from the error, and return with no further
 27      * processing.
 28      */
 29     if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {
 30 
 31         Error = 1;
 32 
 33         /*
 34          * Reset should never fail for transmit channel
 35          */
 36         XAxiDma_Reset(AxiDmaInst);
 37 
 38         TimeOut = RESET_TIMEOUT_COUNTER;
 39 
 40         while (TimeOut) {
 41             if (XAxiDma_ResetIsDone(AxiDmaInst)) {
 42                 break;
 43             }
 44 
 45             TimeOut -= 1;
 46         }
 47 
 48         return;
 49     }
 50 
 51     /*
 52      * If Completion interrupt is asserted, then set the TxDone flag
 53      */
 54     if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {
 55 
 56         TxDone = 1;
 57     }
 58 }
 59 
 60 /*****************************************************************************/
 61 /*
 62 *
 63 * This is the DMA RX interrupt handler function
 64 *
 65 * It gets the interrupt status from the hardware, acknowledges it, and if any
 66 * error happens, it resets the hardware. Otherwise, if a completion interrupt
 67 * is present, then it sets the RxDone flag.
 68 *
 69 * @param    Callback is a pointer to RX channel of the DMA engine.
 70 *
 71 * @return    None.
 72 *
 73 * @note        None.
 74 *
 75 ******************************************************************************/
 76 static void RxIntrHandler(void *Callback)
 77 {
 78     u32 IrqStatus;
 79     int TimeOut;
 80     XAxiDma *AxiDmaInst = (XAxiDma *)Callback;
 81 
 82     /* Read pending interrupts */
 83     IrqStatus = XAxiDma_IntrGetIrq(AxiDmaInst, XAXIDMA_DEVICE_TO_DMA);
 84 
 85     /* Acknowledge pending interrupts */
 86     XAxiDma_IntrAckIrq(AxiDmaInst, IrqStatus, XAXIDMA_DEVICE_TO_DMA);
 87 
 88     /*
 89      * If no interrupt is asserted, we do not do anything
 90      */
 91     if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
 92         return;
 93     }
 94 
 95     /*
 96      * If error interrupt is asserted, raise error flag, reset the
 97      * hardware to recover from the error, and return with no further
 98      * processing.
 99      */
100     if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {
101 
102         Error = 1;
103 
104         /* Reset could fail and hang
105          * NEED a way to handle this or do not call it??
106          */
107         XAxiDma_Reset(AxiDmaInst);
108 
109         TimeOut = RESET_TIMEOUT_COUNTER;
110 
111         while (TimeOut) {
112             if(XAxiDma_ResetIsDone(AxiDmaInst)) {
113                 break;
114             }
115 
116             TimeOut -= 1;
117         }
118 
119         return;
120     }
121 
122     /*
123      * If completion interrupt is asserted, then set RxDone flag
124      */
125     if ((IrqStatus & XAXIDMA_IRQ_IOC_MASK)) {
126 
127         RxDone = 1;
128     }
129 }
intrHandler

   DMA启动传输部分如下,调用库函数XAxiDma_SimpleTransfer。以第一个为例,是将RxBufferPtr为数据首地址,MAX_PKT_LEN为字节数,XAXIDMA_DEVICE_TO_DMA为传输方向启动DMA传输数据。MAX_PKT_LEN不能超过之前IP核配置参数指定的16384byte,XAXIDMA_DEVICE_TO_DMA和XAXIDMA_DMA_TO_DEVICE依次指PL-> DMA ->PS以及PS->DMA -> PL方向,也就是PL就是其中的DEVICE。DMA启动函数只有一个地址,这是与PS端DMA最大的区别,因为数据搬移的另一侧是带有无地址的流接口的IP核,该侧“地址”由硬件连接决定。

  再来看看搬移数据内存首地址RxBufferPtr和TxBufferPtr.从下边的定义可见MEM_BASE_ADDR是DDR_BASE_ADDR加上一段偏移量的结果,DDR基地址数值从xparameters.h中查看。

四、函数重用封装

  官方的代码比较乱,都写在main函数里,米联客教程init_intr_sys()函数完成整个中断系统的建立,将官方demo中main函数DMA测试之前关于中断部分的代码全部封装其中,包括DMA中断初始化,中断控制器初始化,使能中断异常,连接DMA发送与接收中断,DMA中断使能五个过程。

五、AXI总线信号ILA波形分析 

 AXI Stream主要接口:

  tdata:数据    tkeep:字节有效指示    tlast:帧尾指示    tready:准备就绪    tvalid:数据有效指示

  MM2S方向一旦tvalid拉高则触发ILA抓取信号波形。一帧数据有64个,每个数据32bit(4byte),一共正好为C代码中MAX_PKT_LEN数值,即256byte。

  其中他keep信号比较关键。如当stream位宽为16bit,传输数据量为255byte时,tkeep信号在最后一个stream数据对应位置是2'b01指示第128个16bit数中最后一个数的高字节为upsize过程中无效填充数据。

  后续本人会利用System Generator设计算法IP,之后集成到IP Integerator中作为CPU外设进行板级验证。继续学习!

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:大话音频变声原理 附简单示例代码

下一篇:一道简单的字符题