agc007C - Pushing Balls(期望 等差数列)

2018-09-29 03:52:27来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

题意

题目链接

翻译来自神仙yyb

Sol

又是一道神仙题。。

我开始的思路是枚举空位,但是还是不能做,GG

标算过于神仙,其中一些细节我也理解不了

题目给出的实际是一个首项为$d$,公差为$x$的等差数列

$sum = 2dn + \frac{2n(2n - 1)x}{2}$

此时的期望为$\frac{sum}{2n}$

考虑修改之后会有那些值发生改变

$d' = \frac{(2n - 2)d + d + 2x + 3d + 3x)}{2n}$(考虑第一个位置怎么变)

$sum' = \frac{d + (d + x) + (2n - 2)x + d + (2n - 1) x + d}{2n}$

$x' = \frac{sum -2nd}{n(2n - 1)}$

不断推下去即可

#include<bits/stdc++.h>
using namespace std;
long double N, d1, x, ans;
int main() {
    cin >> N >> d1 >> x;
    for(int i = N; i >= 1; i--) {
        long double s = d1 * 2 * N + N * (2 * N - 1) * x;
        ans += s / 2 / N;
        s = s - (4 * d1 + 4 * N * x - 2 * x)  / 2 / N;
        d1 = ((2 * N - 2) * d1 + d1 + 2 * x + 3 * d1 + 3 * x) / 2 / N;
        N--;
        x = (s - 2 * N * d1) / N / (2 * N - 1);
    //    if(i > 990) printf("%.10lf\n", (double)x);
    }
    printf("%.15lf", (double)ans);
    return 0;
}

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:Luogu P1070 道路游戏

下一篇:洛谷P1397 [NOI2013]矩阵游戏(十进制矩阵快速幂)