POJ2505 A multiplication game(博弈)

2018-08-05 07:41:53来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

题意

开始时$p = 1$,每次可以乘$2 - 9$,第一个使得$p \geqslant n$的人赢

问先手是否必胜

$1 <n <4294967295$

Sol

认真的推理一波。

若当前的数为$\frac{n}{9} \leqslant x \leqslant n$,则先手必胜

若当前的数为$\frac{n}{18} \leqslant x \leqslant \frac{n}{9}$,则先手必败

若当前的数为$\frac{n}{18 * 9} \leqslant x \leqslant \frac{n}{18}$,则先手必胜

$\dots \dots \dots \dots \dots \dots \dots \dots \dots\dots\dots \dots $

然后就显然了,每次除$18$,最后判一下就行了。

然而不知道为啥用double才能过qwq。。。

#include<cstdio>
#define LL long long 
using namespace std;
int main() {
    double n;
    while(scanf("%lf", &n) != EOF) {
        while(n > 18) n = n / 18;
        if(n <= 9) puts("Stan wins.");
        else puts("Ollie wins.");        
    }
    return 0;
}

 

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:【共读Primer】10.&lt;2.3&gt; 复合类型 Page45

下一篇:codeforces736D. Permutations(线性代数)