BZOJ1061: [Noi2008]志愿者招募(线性规划)

2018-07-17 03:56:34来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

Time Limit: 20 Sec  Memory Limit: 162 MB
Submit: 5725  Solved: 3437
[Submit][Status][Discuss]

Description

 

  申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难
题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。

Input

  第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负
整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了
方便起见,我们可以认为每类志愿者的数量都是无限多的。

Output

  仅包含一个整数,表示你所设计的最优方案的总费用。

Sample Input

3 3
2 3 4
1 2 2
2 3 5
3 3 2

Sample Output

14

HINT

1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。

Source

 

如果不知道这题是线性规划的话肯定很难看出来,不过知道了就好做多了

若$C_i$为第$i$个人的花费,$a_i$为第$i$天需要的人,$x_i$为第$i$个人的数量

那么我们需要满足对于每一天$i$,$\sum_{i = 1}^{M} x_i >= a_i$,同时$\sum C_i x_i$最小

啥?最小?当时我推出式子来就蒙了qwq。然后跑去膜题解

根据对偶原理,问题相当于使得$\sum_{i = 1}^{M} x_i <= C_i$,的情况下$\sum a_i x_i$最大

仔细一想好像挺有道理

关于最后答案是否为整数的问题

https://www.luogu.org/problemnew/solution/P3980

 

#include<cstdio>
#include<algorithm>
#include<cmath>
#define LL long long 
using namespace std;
const int MAXN = 51, INF = 1e9 + 10;
const double eps = 1e-8;
inline int read() {
    char c = getchar();int x = 0,f = 1;
    while(c < '0' || c > '9'){if(c == '-')f = -1;c = getchar();}
    while(c >= '0' && c <= '9'){x = x * 10 + c - '0',c = getchar();}
    return x * f;
}
int N, M;
LL a[10001][1001];
void Pivot(int l, int e) {
    double t = a[l][e]; a[l][e] = 1;
    for(int i = 0; i <= N; i++) a[l][i] /= t;
    for(int i = 0; i <= M; i++) {
        if(i != l && abs(a[i][e]) > eps) {
            t = a[i][e]; a[i][e] = 0;
            for(int j = 0; j <= N; j++)
                a[i][j] -= a[l][j] * t;
        }
    }
}
bool simplex() {
    while(1) {
        int l = 0, e = 0; double mn = INF;
        for(int i = 1; i <= N; i++)
            if(a[0][i] > eps) 
                {e = i; break;}
        if(!e) break;
        for(int i = 1; i <= M; i++)
            if(a[i][e] > eps && a[i][0] / a[i][e] < mn)
                mn = a[i][0] / a[i][e], l = i;
        Pivot(l, e);
    }
    return 1;
}
int main() {
    srand(19260817);
    N = read(); M = read();
    for(int i = 1; i <= N; i++) a[0][i] = read();    
    for(int i = 1; i <= M; i++) { 
        int S = read(), T = read(), C = read();
        for(int j = S; j <= T; j++)    
            a[i][j] = 1;
        a[i][0] = C;
    }
    simplex();
    printf("%lld", -a[0][0]);
    return 0;
}

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:UOJ#179. 线性规划(线性规划)

下一篇:CSU1216: 异或最大值(01Trie树)