PAT (Basic Level) Practise (中文)-卡拉兹(Ca…

2018-06-18 04:02:24来源:未知 阅读 ()

新老客户大回馈,云服务器低至5折

卡拉兹(Callatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:
3
输出样例:
5

 

#include <stdio.h>

main(){
	int number = 0;
	int count = 0;
	scanf("%d",&number);
	while(number != 1){
		if(number%2 == 1){
			number = (3*number + 1)/2;
		} else {
			number = number/2;
		}
		count++;
	}
	printf("%d",count);
}

  

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:大小端和字节序

下一篇:可存放任意类型变量的动态数组--C语言实现