回调函数到底是怎么一回事呢?
2018-06-18 03:53:46来源:未知 阅读 ()
今天看到回调函数,有点迷糊,找了好多搜索引擎的资料,都不是让我很能理解,看了《c和指针》我才明白了。
简单描述一下什么是回调函数:
用户把一个函数指针作为参数传递给其他函数,后者将“回调”用户的函数。如果函数可以再不同的时间执行不同类型的工作或者执行只能由函数调用者定义的工作,都可以使用回调函数。 回调函数无法知道比较的值的类型,所以参数的类型被声明为void*。表示一个指向未知类型的指针。 可以通过函数指针来实现回调函数。一个指向回调函数的指针作为参数传递给另一个函数,后者使用这个指针调用回调函数。
可能说了太多定义也不会很是明白,来几个事例说说。
当我们在在链表中查找一个数时,我们一般会这样写:
1 Node *search_list( Node *node, int const value ) 2 { 3 while ( NULL != node ){ 4 if ( node->value == value ){ 5 break; 6 } 7 node = node->link; 8 } 9 10 return node; 11 }
这样就限制我们只能在查找的数必须是int类型,当变为其他类型时我们就无法用这个函数,但是重新写一个函数,他们重复代码又太多。那我们看看用回调函数如何办到。
回调函数查找:
1 int compare_int( void const *a, void const *b ) 2 { 3 if ( *( int * )a == *( int * )b ){ 4 return 0; 5 } 6 7 return 1; 8 }
1 Node *search_list(Node *node, void const *value, 2 int (*compare)(void const *, void const *)) //函数指针 3 { 4 while(node != NULL){ 5 if(compare(&node->value, value) == 0) //相等 6 break; 7 node = node->link; 8 } 9 return node; 10 }
这样利用回调函数就可以解决如上问题。我们把一个函数指针( int (*compare)(void const *, void const *) )作为参数传递给查找函数,查找函数将“回调”比较函数。当我们需要执行不同类型的比较时我们合理调用该函数。例如:当我们整形查找时: search_list( root, &desired_value, compare_int ); ,使用字符查找时: search_list( root, &desired_value, compare_char ); 。这就是回调函数简单的应用,当然回调函数不仅仅只是用于这些简单的例子,比如库函数qsort就是利用回调函数实现。
函数原型如下:
void qsort( void *base, //字符串首地址 size_t num, //排序总个数 size_t width, //排序元素的大小 int (__cdecl *compare )(const void *, const void *) //函数指针 );
库函数实现:
void qsort(
void *base, //字符串首地址
size_t num, //排序总个数
size_t width, //排序元素的大小
int (__cdecl *compare )(const void *, const void *) //函数指针
);
{ char *lo, *hi; /* ends of sub-array currently sorting */ char *mid; /* points to middle of subarray */ char *loguy, *higuy; /* traveling pointers for partition step */ size_t size; /* size of the sub-array */ char *lostk[STKSIZ], *histk[STKSIZ]; int stkptr; /* stack for saving sub-array to be processed */ /* validation section */ _VALIDATE_RETURN_VOID(base != NULL || num == 0, EINVAL); _VALIDATE_RETURN_VOID(width > 0, EINVAL); _VALIDATE_RETURN_VOID(comp != NULL, EINVAL); if (num < 2) return; /* nothing to do */ stkptr = 0; /* initialize stack */ lo = (char *)base; hi = (char *)base + width * (num-1); /* initialize limits */ /* this entry point is for pseudo-recursion calling: setting lo and hi and jumping to here is like recursion, but stkptr is preserved, locals aren't, so we preserve stuff on the stack */ recurse: size = (hi - lo) / width + 1; /* number of el's to sort */ /* below a certain size, it is faster to use a O(n^2) sorting method */ if (size <= CUTOFF) { __SHORTSORT(lo, hi, width, comp, context); } else { /* First we pick a partitioning element. The efficiency of the algorithm demands that we find one that is approximately the median of the values, but also that we select one fast. We choose the median of the first, middle, and last elements, to avoid bad performance in the face of already sorted data, or data that is made up of multiple sorted runs appended together. Testing shows that a median-of-three algorithm provides better performance than simply picking the middle element for the latter case. */ mid = lo + (size / 2) * width; /* find middle element */ /* Sort the first, middle, last elements into order */ if (__COMPARE(context, lo, mid) > 0) { swap(lo, mid, width); } if (__COMPARE(context, lo, hi) > 0) { swap(lo, hi, width); } if (__COMPARE(context, mid, hi) > 0) { swap(mid, hi, width); } /* We now wish to partition the array into three pieces, one consisting of elements <= partition element, one of elements equal to the partition element, and one of elements > than it. This is done below; comments indicate conditions established at every step. */ loguy = lo; higuy = hi; /* Note that higuy decreases and loguy increases on every iteration, so loop must terminate. */ for (;;) { /* lo <= loguy < hi, lo < higuy <= hi, A[i] <= A[mid] for lo <= i <= loguy, A[i] > A[mid] for higuy <= i < hi, A[hi] >= A[mid] */ /* The doubled loop is to avoid calling comp(mid,mid), since some existing comparison funcs don't work when passed the same value for both pointers. */ if (mid > loguy) { do { loguy += width; } while (loguy < mid && __COMPARE(context, loguy, mid) <= 0); } if (mid <= loguy) { do { loguy += width; } while (loguy <= hi && __COMPARE(context, loguy, mid) <= 0); } /* lo < loguy <= hi+1, A[i] <= A[mid] for lo <= i < loguy, either loguy > hi or A[loguy] > A[mid] */ do { higuy -= width; } while (higuy > mid && __COMPARE(context, higuy, mid) > 0); /* lo <= higuy < hi, A[i] > A[mid] for higuy < i < hi, either higuy == lo or A[higuy] <= A[mid] */ if (higuy < loguy) break; /* if loguy > hi or higuy == lo, then we would have exited, so A[loguy] > A[mid], A[higuy] <= A[mid], loguy <= hi, higuy > lo */ swap(loguy, higuy, width); /* If the partition element was moved, follow it. Only need to check for mid == higuy, since before the swap, A[loguy] > A[mid] implies loguy != mid. */ if (mid == higuy) mid = loguy; /* A[loguy] <= A[mid], A[higuy] > A[mid]; so condition at top of loop is re-established */ } /* A[i] <= A[mid] for lo <= i < loguy, A[i] > A[mid] for higuy < i < hi, A[hi] >= A[mid] higuy < loguy implying: higuy == loguy-1 or higuy == hi - 1, loguy == hi + 1, A[hi] == A[mid] */ /* Find adjacent elements equal to the partition element. The doubled loop is to avoid calling comp(mid,mid), since some existing comparison funcs don't work when passed the same value for both pointers. */ higuy += width; if (mid < higuy) { do { higuy -= width; } while (higuy > mid && __COMPARE(context, higuy, mid) == 0); } if (mid >= higuy) { do { higuy -= width; } while (higuy > lo && __COMPARE(context, higuy, mid) == 0); } /* OK, now we have the following: higuy < loguy lo <= higuy <= hi A[i] <= A[mid] for lo <= i <= higuy A[i] == A[mid] for higuy < i < loguy A[i] > A[mid] for loguy <= i < hi A[hi] >= A[mid] */ /* We've finished the partition, now we want to sort the subarrays [lo, higuy] and [loguy, hi]. We do the smaller one first to minimize stack usage. We only sort arrays of length 2 or more.*/ if ( higuy - lo >= hi - loguy ) { if (lo < higuy) { lostk[stkptr] = lo; histk[stkptr] = higuy; ++stkptr; } /* save big recursion for later */ if (loguy < hi) { lo = loguy; goto recurse; /* do small recursion */ } } else { if (loguy < hi) { lostk[stkptr] = loguy; histk[stkptr] = hi; ++stkptr; /* save big recursion for later */ } if (lo < higuy) { hi = higuy; goto recurse; /* do small recursion */ } } } /* We have sorted the array, except for any pending sorts on the stack. Check if there are any, and do them. */ --stkptr; if (stkptr >= 0) { lo = lostk[stkptr]; hi = histk[stkptr]; goto recurse; /* pop subarray from stack */ } else return; /* all subarrays done */ }
为了更好地理解回调函数,接下来我们来写一个自己的qsort函数(利用冒泡排序)
int char_compare(void const * c1,void const* c2) //比较函数 { int a = *((int*)c1); int b = *((int*)c2); return a>b ? 1 : a<b ? -1 : 0; } void Swap(char *str1,char *str2,int size) { while (size--) { char tmp = *str1; *str1 = *str2; *str2 = tmp; str1++;str2++; } } void MyQsort(void *str,int len,int elen,int(*compare)(void const*,void const*)) //基于回调函数写的排序算法 { int i = 0; int j = 0; int flag = 1; for (i=0; i<len-1; i++) { for (j=0; j<len-1-i; j++) { if (compare((char*)str+j*elen,(char*)str+(j+1)*elen)>0) { flag = 0; Swap((char*)str+j*elen,(char*)str+(j+1)*elen,elen); } } if (flag) return; } }
看了例题在来说说原理:
简而言之,回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用为调用它所指向的函数时,我 们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条件进行响应。
回调函数实现的机制是:
(1)定义一个回调函数;
(2)提供函数实现的一方在初始化的时候,将回调函数的函数指针注册给调用者;
(3)当特定的事件或条件发生的时候,调用者使用函数指针调用回调函数对事件进行处理。
看了两个例子大家应该能理解回调函数了,如果还有什么问题可以私信我,建议把指针这节理解透彻,这是指针的
参考文献:
Kenneth A.Reek 著 徐波 译.c和指针.人民邮电出版社.2008
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
上一篇:字符串处理总结
- C++ 转换函数搭配友元函数 2020-06-10
- C++ rand函数 2020-06-10
- C++ 友元函数 2020-06-10
- C++ const成员函数 2020-06-03
- C++ 析构函数 2020-06-03
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash