BZOJ3687: 简单题(dp+bitset)

2018-06-17 20:53:13来源:未知 阅读 ()

新老客户大回馈,云服务器低至5折

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 1138  Solved: 556
[Submit][Status][Discuss]

Description

小呆开始研究集合论了,他提出了关于一个数集四个问题:
1.子集的异或和的算术和。
2.子集的异或和的异或和。
3.子集的算术和的算术和。
4.子集的算术和的异或和。
    目前为止,小呆已经解决了前三个问题,还剩下最后一个问题还没有解决,他决定把
这个问题交给你,未来的集训队队员来实现。

Input

第一行,一个整数n。
第二行,n个正整数,表示01,a2….,。

Output

 一行,包含一个整数,表示所有子集和的异或和。

Sample Input

2
1 3

Sample Output

6

HINT

 

【样例解释】

  6=1 异或 3 异或 (1+3)

【数据规模与约定】

ai >0,1<n<1000,∑ai≤2000000。

另外,不保证集合中的数满足互异性,即有可能出现Ai= Aj且i不等于J

 

Source

 

打死也想不出来系列QWQ...

感觉自己的思维还是太僵化了,看到数列问题就开始想怎么优化枚举子集

但是很显然这种子集问题是不可能通过枚举子集来实现的,

 

正解:

首先我们要把问题转化到值域上去考虑

设$f[i]$表示子集和为$i$的方案,那么加入一个数$x$,所有的$f[i]+=f[i-1]$

考虑到最后的异或操作,因此我们只维护方案的奇偶性即可

这样的话用一个bitset就可以了

bitset中的$^$,实际上就是$\%2$

 

#include<cstdio>
#include<iostream>
#include<bitset>
#include<cstring>
using namespace std;
int N;
bitset<2000001>bit;
int main()
{
    scanf("%d",&N);
    bit[0]=1;
    while(N--)
    {
        int x;
        scanf("%d",&x);
        bit^=bit<<x;
    }
    int ans=0;
    for(int i=2000000;i>=0;i--)
        if(bit[i]==1) 
            ans^=i;
    printf("%d",ans);
    return 0;
}

 

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:24.C++- 抽象类(存虚函数)、接口、多重继承

下一篇:Caesar密码