洛谷P3382 【模板】三分法(三分)
2018-06-17 20:41:55来源:未知 阅读 ()
题目描述
如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减。试求出x的值。
输入输出格式
输入格式:
第一行一次包含一个正整数N和两个实数l、r,含义如题目描述所示。
第二行包含N+1个实数,从高到低依次表示该N次函数各项的系数。
输出格式:
输出为一行,包含一个实数,即为x的值。四舍五入保留5位小数。
输入输出样例
3 -0.9981 0.5 1 -3 -3 1
-0.41421
说明
时空限制:50ms,128M
数据规模:
对于100%的数据:7<=N<=13
样例说明:
如图所示,红色段即为该函数f(x)=x^3-3x^2-3x+1在区间[-0.9981,0.5]上的图像。
当x=-0.41421时图像位于最高点,故此时函数在[l,x]上单调增,[x,r]上单调减,故x=-0.41421,输出-0.41421。
(Tip.l&r的范围并不是非常大ww不会超过一位数)
不会三分好吃亏啊。
三分其实很简单
对于一个二次函数
在$[L,R]$内取最值,选取两个点$$x = (2 * l + r) / 3, y = (l + 2 * r) / 3$$
若$f(x)>f(y)$,那么$[y,R]$这一段可以舍弃(一定不会成为最优解),否则$[l,x]$这一段舍弃
#include<cstdio> #define abs(x) x < 0 ? -x : x int N; double a[13], l, r; double f(double x) { double ans = 0; for(int i = N; i >= 0; i--) ans = ans * x + a[i]; return ans; } main() { scanf("%d %lf %lf", &N, &l, &r); for(int i = N; i >= 0; i--) scanf("%lf", &a[i]); while(abs(r - l) > 1e-12) { double x = (2 * l + r) / 3, y = (l + 2 * r) / 3; f(x) > f(y) ? r = y : l = x; } printf("%.5lf", l); }
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
- C++冒泡排序 (基于函数模板实现) 2020-05-31
- C++ 模板类vector 2020-05-31
- C++ 模板类array 2020-05-31
- C++ 模板类vector 2020-05-30
- 洛谷P1164->小A点菜 2020-05-18
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash