MongoDB 分页查询的方法及性能

2018-07-13 08:47:35来源:编程学习网 阅读 ()

新老客户大回馈,云服务器低至5折

  最近有点忙,本来有好多东西可以总结,Redis系列其实还应该有四、五、六…不过《Redis in Action》还没读完,等读完再来总结,不然太水,对不起读者。

  自从上次Redis之后呢,算是对Nosql类型的产品有些入门了,这会换个方向,研究下真正的NoSql数据库——MongoDB。说起MongoDB,确实是用完了之后颠覆了我的数据管和程序观。怎么说呢?如果用在OO设计的程序里那真的太棒了,像我这种数据驱动、表驱动思想根深蒂固的人,思路很难一下子跟上MongoDB的节奏。当然并不是调用个api,写几句query那些思路,而是程序设计思路,业务领域的设计,如果OO,如何适合展现,适合查询,适合聚合运算等等。总之MongoDB重要的是程序的设计,设计好了,其实完全就忽略了Mongo的存储,因为mongodb实在是太方便了。

  废话不多说,关于入门的资料、安装以及其他请拉到文章末尾,我附上了一些资料,以后如有必要再来分享。这篇文章着重的讲讲MongoDB的分页查询,为啥?分页可是常见的头号杀手,弄不好了,客户骂,经理骂。

 传统的SQL分页

  传统的sql分页,所有的方案几乎是绕不开row_number的,对于需要各种排序,复杂查询的场景,row_number就是杀手锏。另外,针对现在的web很流行的poll/push加载分页的方式,一般会利用时间戳来实现分页。 这两种分页可以说前者是通用的,连Linq生成的分页都是row_number,可想而知它多通用。后者是无论是性能和复杂程度都是最好的,因为只要简单的一个时间戳即可。

 MongoDB分页

  进入到Mongo的思路,分页其实并不难,那难得是什么?其实倒也没啥,看明白了也就那样,和SQL分页的思路是一致的。

  先说明下这篇文章使用的用例,我在数据库里导入了如下的实体数据,其中cus_id、amount我生成为有序的数字,倒入的记录数是200w:

public class Test
{
        /// <summary>
        /// 主键 ObjectId 是MongoDB自带的主键类型
        /// </summary>
        public ObjectId Id { get; set; }
        /// <summary>
        /// 客户编号
        /// </summary>
        [BsonElement("cust_id")]
        public string CustomerId { get; set; }
        /// <summary>
        /// 总数
        /// </summary>
        [BsonElement("amount")]
        public int Amount { get; set; }
        /// <summary>
        /// 状态
        /// </summary>
        [BsonElement("status")]
        public string Status { get; set; }
}

  以下的操作基于MongoDB GUI 工具见参考资料3

  首先来看看分页需要的参数以及结果,一般的分页需要的参数是:

  • PageIndex    当前页
  • PageSize      每页记录数
  • QueryParam[]  其他的查询字段

  所以按照row_number的分页思想,也就是说取第(pageIndex*pageSize)到第(pageIndex*pageSize + pageSize),我们用Linq表达就是:

query.Where(xxx...xxx).Skip(pageIndex*pageSize).Take(pageSize)

  查找了资料,还真有skip函数,而且还有Limit函数 见参考资料1、2,于是轻易地实现了这样的分页查询:

db.test.find({xxx...xxx}).sort({"amount":1}).skip(10).limit(10)//这里忽略掉查询语句

  相当的高效,几乎是几毫秒就出来了结果,果然是NoSql效率一流。但是慢,我这里使用的数据只是10条而已,并没有很多数据。我把数据加到100000,效率大概是20ms。如果这么简单就研究结束了的话,那真的是太辜负了程序猿要钻研的精神了。sql分页的方案,方案可是能有一大把,效率也是不一的,那Mongo难道就这一种,答案显然不是这样的。另外是否效率上,性能上会有问题呢?Redis篇里,就吃过这样的亏,乱用Keys。

  在查看了一些资料之后,发现所有的资料都是这样说的:

  不要轻易使用Skip来做查询,否则数据量大了就会导致性能急剧下降,这是因为Skip是一条一条的数过来的,多了自然就慢了。

  这么说Skip就要避免使用了,那么如何避免呢?首先来回顾SQL分页的后一种时间戳分页方案,这种利用字段的有序性质,利用查询来取数据的方式,可以直接避免掉了大量的数数。也就是说,如果能附带上这样的条件那查询效率就会提高,事实上是这样的么?我们来验证一下:

  这里我们假设查询第100001条数据,这条数据的Amount值是:2399927,我们来写两条语句分别如下:

db.test.sort({"amount":1}).skip(100000).limit(10)  //183ms


db.test.find({amount:{$gt:2399927}}).sort({"amount":1}).limit(10)  //53ms

  结果已经附带到注释了,很明显后者的性能是前者的三分之一,差距是非常大的。也印证了Skip效率差的理论。

 C#实现

  上面已经谈过了MongoDB分页的语句和效率,那么我们来实现C#驱动版本。

  本篇文章里使用的是官方的BSON驱动,详见参考资料4。Mongo驱动附带了另种方式一种是类似ADO.NET的原生query,一种是Linq,这里我们两种都实现

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:Redis&nbsp;数据结构使用场景

下一篇:避免误用&nbsp;Redis