如何合理地估算线程池大小?

2020-05-31 16:04:02来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

如何合理地估算线程池大小?

如何合理地估算线程池大小?

这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:

如何设计线程池大小,使得可以在1s内处理完20个Transaction?

计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。

再来第二种简单的但不知是否可行的方法(N为CPU总核数):

  • 如果是CPU密集型应用,则线程池大小设置为N+1

  • 如果是IO密集型应用,则线程池大小设置为2N+1

如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

接下来在这个文档:服务器性能IO优化 中发现一个估算公式:

最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

可以得出一个结论:

线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

上一种估算方法也和这个结论相合。

一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

  • 尽量提高短板操作的并行化比率,比如多线程下载技术

  • 增强短板能力,比如用NIO替代IO

第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:

加速比=优化前系统耗时 / 优化后系统耗时

加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:

Speedup <= 1 / (F + (1-F)/N)

当N足够大时,串行化比率F越小,加速比Speedup越大。

写到这里,我突然冒出一个问题。

是否使用线程池就一定比使用单线程高效呢?

答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

  • 多线程带来线程上下文切换开销,单线程就没有这种开销

当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:

 ?
 package pool_size_calculate;
 ?
 import java.math.BigDecimal;
 import java.math.RoundingMode;
 import java.util.Timer;
 import java.util.TimerTask;
 import java.util.concurrent.BlockingQueue;
 ?
 /**
  * A class that calculates the optimal thread pool boundaries. It takes the
  * desired target utilization and the desired work queue memory consumption as
  * input and retuns thread count and work queue capacity.
  *
  * @author Niklas Schlimm
  *
  */
 public abstract class PoolSizeCalculator {
 ?
   /**
    * The sample queue size to calculate the size of a single {@link Runnable}
    * element.
    */
   private final int SAMPLE_QUEUE_SIZE = 1000;
 ?
   /**
    * Accuracy of test run. It must finish within 20ms of the testTime
    * otherwise we retry the test. This could be configurable.
    */
   private final int EPSYLON = 20;
 ?
   /**
    * Control variable for the CPU time investigation.
    */
   private volatile boolean expired;
 ?
   /**
    * Time (millis) of the test run in the CPU time calculation.
    */
   private final long testtime = 3000;
 ?
   /**
    * Calculates the boundaries of a thread pool for a given {@link Runnable}.
    *
    * @param targetUtilization
    *            the desired utilization of the CPUs (0 <= targetUtilization <=    *            1)    * @param targetQueueSizeBytes    *            the desired maximum work queue size of the thread pool (bytes)    */   protected void calculateBoundaries(BigDecimal targetUtilization,       BigDecimal targetQueueSizeBytes) {     calculateOptimalCapacity(targetQueueSizeBytes);     Runnable task = creatTask();     start(task);     start(task); // warm up phase     long cputime = getCurrentThreadCPUTime();     start(task); // test intervall     cputime = getCurrentThreadCPUTime() - cputime;     long waittime = (testtime * 1000000) - cputime;     calculateOptimalThreadCount(cputime, waittime, targetUtilization);   }   private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {     long mem = calculateMemoryUsage();     BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(         mem), RoundingMode.HALF_UP);     System.out.println("Target queue memory usage (bytes): "         + targetQueueSizeBytes);     System.out.println("createTask() produced "         + creatTask().getClass().getName() + " which took " + mem         + " bytes in a queue");     System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);     System.out.println("* Recommended queue capacity (bytes): "         + queueCapacity);   }   /**    * Brian Goetz' optimal thread count formula, see 'Java Concurrency in    * Practice' (chapter 8.2)    *     * @param cpu    *            cpu time consumed by considered task    * @param wait    *            wait time of considered task    * @param targetUtilization    *            target utilization of the system    */   private void calculateOptimalThreadCount(long cpu, long wait,       BigDecimal targetUtilization) {     BigDecimal waitTime = new BigDecimal(wait);     BigDecimal computeTime = new BigDecimal(cpu);     BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()         .availableProcessors());     BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)         .multiply(             new BigDecimal(1).add(waitTime.divide(computeTime,                 RoundingMode.HALF_UP)));     System.out.println("Number of CPU: " + numberOfCPU);     System.out.println("Target utilization: " + targetUtilization);     System.out.println("Elapsed time (nanos): " + (testtime * 1000000));     System.out.println("Compute time (nanos): " + cpu);     System.out.println("Wait time (nanos): " + wait);     System.out.println("Formula: " + numberOfCPU + " * "         + targetUtilization + " * (1 + " + waitTime + " / "         + computeTime + ")");     System.out.println("* Optimal thread count: " + optimalthreadcount);   }   /**    * Runs the {@link Runnable} over a period defined in {@link #testtime}.    * Based on Heinz Kabbutz' ideas    * (http://www.javaspecialists.eu/archive/Issue124.html).    *     * @param task    *            the runnable under investigation    */   public void start(Runnable task) {     long start = 0;     int runs = 0;     do {       if (++runs > 5) {
         throw new IllegalStateException("Test not accurate");
       }
       expired = false;
       start = System.currentTimeMillis();
       Timer timer = new Timer();
       timer.schedule(new TimerTask() {
         public void run() {
           expired = true;
         }
       }, testtime);
       while (!expired) {
         task.run();
       }
       start = System.currentTimeMillis() - start;
       timer.cancel();
     } while (Math.abs(start - testtime) > EPSYLON);
     collectGarbage(3);
   }
 ?
   private void collectGarbage(int times) {
     for (int i = 0; i < times; i++) {
       System.gc();
       try {
         Thread.sleep(10);
       } catch (InterruptedException e) {
         Thread.currentThread().interrupt();
         break;
       }
     }
   }
 ?
   /**
    * Calculates the memory usage of a single element in a work queue. Based on
    * Heinz Kabbutz' ideas
    * (http://www.javaspecialists.eu/archive/Issue029.html).
    *
    * @return memory usage of a single {@link Runnable} element in the thread
    *         pools work queue
    */
   public long calculateMemoryUsage() {
     BlockingQueue queue = createWorkQueue();
     for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
       queue.add(creatTask());
     }
     long mem0 = Runtime.getRuntime().totalMemory()
         - Runtime.getRuntime().freeMemory();
     long mem1 = Runtime.getRuntime().totalMemory()
         - Runtime.getRuntime().freeMemory();
     queue = null;
     collectGarbage(15);
     mem0 = Runtime.getRuntime().totalMemory()
         - Runtime.getRuntime().freeMemory();
     queue = createWorkQueue();
     for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
       queue.add(creatTask());
     }
     collectGarbage(15);
     mem1 = Runtime.getRuntime().totalMemory()
         - Runtime.getRuntime().freeMemory();
     return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
   }
 ?
   /**
    * Create your runnable task here.
    *
    * @return an instance of your runnable task under investigation
    */
   protected abstract Runnable creatTask();
 ?
   /**
    * Return an instance of the queue used in the thread pool.
    *
    * @return queue instance
    */
   protected abstract BlockingQueue createWorkQueue();
 ?
   /**
    * Calculate current cpu time. Various frameworks may be used here,
    * depending on the operating system in use. (e.g.
    * http://www.hyperic.com/products/sigar). The more accurate the CPU time
    * measurement, the more accurate the results for thread count boundaries.
    *
    * @return current cpu time of current thread
    */
   protected abstract long getCurrentThreadCPUTime();
 ?
 }

 

然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:

 package pool_size_calculate;
 ?
 import java.io.BufferedReader;
 import java.io.IOException;
 import java.io.InputStreamReader;
 import java.lang.management.ManagementFactory;
 import java.math.BigDecimal;
 import java.net.HttpURLConnection;
 import java.net.URL;
 import java.util.concurrent.BlockingQueue;
 import java.util.concurrent.LinkedBlockingQueue;
 ?
 public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {
 ?
   @Override
   protected Runnable creatTask() {
     return new AsyncIOTask();
   }
 ?
   @Override
   protected BlockingQueue createWorkQueue() {
     return new LinkedBlockingQueue(1000);
   }
 ?
   @Override
   protected long getCurrentThreadCPUTime() {
     return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
   }
 ?
   public static void main(String[] args) {
     PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
     poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
   }
 ?
 }
 ?
 /**
  * 自定义的异步IO任务
  * @author Will
  *
  */
 class AsyncIOTask implements Runnable {
 ?
   @Override
   public void run() {
     HttpURLConnection connection = null;
     BufferedReader reader = null;
     try {
       String getURL = "http://baidu.com";
       URL getUrl = new URL(getURL);
 ?
       connection = (HttpURLConnection) getUrl.openConnection();
       connection.connect();
       reader = new BufferedReader(new InputStreamReader(
           connection.getInputStream()));
 ?
       String line;
       while ((line = reader.readLine()) != null) {
         // empty loop
       }
     }
 ?
     catch (IOException e) {
 ?
     } finally {
       if(reader != null) {
         try {
           reader.close();
         }
         catch(Exception e) {
 ?
         }
       }
       connection.disconnect();
     }
 ?
   }
 ?
 }

 

得到的输出如下:

 
Target queue memory usage (bytes): 100000createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queueFormula: 100000 / 40* Recommended queue capacity (bytes): 2500Number of CPU: 4Target utilization: 1Elapsed time (nanos): 3000000000Compute time (nanos): 47181000Wait time (nanos): 2952819000Formula: 4 * 1 * (1 + 2952819000 / 47181000)* Optimal thread count: 256

 

推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:

 ThreadPoolExecutor pool = new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));

 

“大清亡于闭关锁国,学习技术需要交流和资料”。 在这里我给大家准备了很多的学习资料免费获取,包括但不限于java进阶学习资料、技术干货、大厂面试题系列、技术动向、职业生涯等一切有关程序员的分享.

java进阶方法笔记,学习资料,面试题,电子书籍免费领取,让你成为java大神



原文链接:https://www.cnblogs.com/coderjava/p/13011269.html
如有疑问请与原作者联系

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:(易忘篇)java基本语法难点1

下一篇:遍历Map的方式