《算法导论》第二章demo代码实现(Java版)

2020-02-23 16:01:27来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

《算法导论》第二章demo代码实现(Java版)

《算法导论》第二章demo代码实现(Java版)

前言

表示晚上心里有些不宁静,所以就写一篇博客,来缓缓。囧

拜读《算法导论》这样的神作,当然要做一些练习啦。除了练习题与思考题那样的理论思考,也离不开编码的实践。

所以,后面每个章节,我都会尽力整理出章节中涉及的算法的Java代码实现。

二分查找

算法实现


    package tech.jarry.learning.test.algorithms.binarysearch;
    
    public class BinarySearch {
    
        public static int binarySearch(int[] array, int target) {
            return binarySearch(array, target, 0, array.length - 1);
        }
    
        // 二分查找,要求输入的线性表必须是顺序的
        public static int binarySearch(int[] array, int target, int startIndex, int endIndex) {
    
            if (endIndex > startIndex) {
                int middleIndex = (startIndex + endIndex) / 2;
    
                if (target < array[middleIndex]){
                    return binarySearch(array, target, startIndex, middleIndex);
                } else if (target > array[middleIndex]) {
                    return binarySearch(array, target, middleIndex + 1, endIndex);
                } else if (target == array[middleIndex]) {
                    return middleIndex;
                }
            }
    
            return -1;
        }
    }

算法测试


    package tech.jarry.learning.test.algorithms.binarysearch;
    
    public class BinarySearchTest {
    
        public static void main(String[] args) {
            int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12};
    
            System.out.println(BinarySearch.binarySearch(testArray, 100));
        }
    }

结果输出

-1

这表示没有找到目标数据,可以将测试类中的target修改为其他数字。

冒泡排序

算法实现


    package tech.jarry.learning.test.algorithms.bubblesort;
    
    public class BubbleSort {
    
        public static int[] bubbleSort(int[] array) {
            for (int i = 0; i < array.length; i++){
                for (int j = i; j < array.length; j++) {
                    if (array[j] < array[i]) {
                        int temp = array[i];
                        array[i] = array[j];
                        array[j] = temp;
                    }
                }
            }
            return array;
        }
    }

算法测试


    package tech.jarry.learning.test.algorithms.bubblesort;
    
    import java.util.Arrays;
    
    public class BubbleSortTest {
        public static void main(String[] args) {
    
            int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12};
    
            System.out.println(Arrays.toString(BubbleSort.bubbleSort(testArray)));
        }
    }

结果输出

[0, 1, 2, 3, 4, 5, 5, 7, 9, 12, 18]

插入排序

算法实现


    package tech.jarry.learning.test.algorithms.insertsort;
    
    import java.util.Arrays;
    
    public class InsertionSort {
    
        public static int[]insertSort(int[] originArray) {
            // 从数组的第二个元素开始进行比较(总不能第一个元素和第一个元素自己比较大小吧)
            for (int j = 1; j < originArray.length; j++) {
                // 获取当前元素的值
                int key = originArray[j];
                // 获取前一个元素的下标
                int i = j - 1;
                // 将key值前移(即将遇到的每个大于key的元素后移)
                while (i >= 0 && originArray[i] > key) {
                    originArray[i + 1] = originArray[i];
                     i = i - 1;
                }
                // 直到遇到originArray[i] <= key,才对i+1进行赋值(而i+1元素之前已经后移复制了,即i+2位置保存了i+1位置的值)
                originArray[i + 1] =key;
            }
    
            return originArray;
        }
    
        public static int[] insertSortProWithBinarySearch(int[] array) {
            // 如果数据组织形式是数组,那么即使采用二分查找优化,底层的数组元素移动,依旧会导致最终的时间复杂度变为n^2,而不是期待的n*lgn
            return null;
        }
    }

算法测试


    package tech.jarry.learning.test.algorithms.insertsort;
    
    import java.util.Arrays;
    
    public class InsertionSortTest {
        // test
        public static void main(String[] args) {
            int[] originArray = new int[]{9, 6, 4, 5, 8};
            int[] resultArray = InsertionSort.insertSort(originArray);
            System.out.println(Arrays.toString(resultArray));
        }
    }

结果输出

[4, 5, 6, 8, 9]

归并排序

算法实现

这个代码的实现,可能内容比较多。一方面是由于方法提取(提取哨兵创建的操作),另一方面是由于增加了练习题中提到的无哨兵归并排序的实现(在mergeSort方法中,可以自由选择是否使用哨兵)。


    package tech.jarry.learning.test.algorithms.mergesort;
    
    import java.util.Arrays;
    
    /**
     * 归并排序
     */
    public class MergeSort {
    
        public static int[] mergeSort(int[] array) {
            return mergeSort(array, 0, array.length - 1);
        }
    
        public static int[] mergeSort(int[] array, int startIndex, int endIndex) {
            if (startIndex < endIndex) {
                int middleIndex = startIndex + (endIndex - startIndex) / 2;
                array = mergeSort(array, startIndex, middleIndex);
                array = mergeSort(array, middleIndex + 1, endIndex);
    
                // 使用哨兵,进行合并
    //            return merge(array, startIndex, middleIndex, endIndex);
                // 不适用哨兵,进行合并
                return noSentinelMerge(array, startIndex, middleIndex, endIndex);
            }
    
            // 如果startIndex = endIndex,表示array只有一个元素
            return array;
        }
    
        private static int[] merge(int[] array, int startIndex, int middleIndex, int endIndex) {
            int[] sentinelLeftArray = createSentinelArray(array, startIndex, middleIndex);
            int[] sentinelRightArray = createSentinelArray(array, middleIndex + 1, endIndex);
    
            for (int i = 0, m = 0, n = 0; i < endIndex - startIndex + 1; i++) {
                if (sentinelLeftArray[m] < sentinelRightArray[n]) {
                    // 这里千万别忘了startIndex,因为不同分支的起点不同
                    array[startIndex + i] = sentinelLeftArray[m++];
                } else {
                    array[startIndex + i] = sentinelRightArray[n++];
                }
                // 不用考虑两个Integer.MAX_VALUE,因为最后两个数组分别剩下的元素必然是这两个哨兵元素
            }
            return array;
        }
    
        private static int[] createSentinelArray(int[] array, int startIndex, int endIndex) {
            int length = endIndex - startIndex + 1;
            int[] sentinelArray = new int[length + 1];
            for (int i = 0; i < length; i++) {
                sentinelArray[i] = array[startIndex + i];
            }
            sentinelArray[endIndex - startIndex + 1] = Integer.MAX_VALUE;
            return sentinelArray;
        }
    
        // p.22_practise2.3-2 在不使用哨兵的前提下,进行归并排序的合并操作
        private static int[] noSentinelMerge(int[] array, int startIndex, int middleIndex, int endIndex) {
            int[] leftArray = createNonSentinelBranchArray(array, startIndex, middleIndex);
            int[] rightArray = createNonSentinelBranchArray(array, middleIndex + 1, endIndex);
    
            for (int i = 0, m = 0, n = 0; i < endIndex - startIndex + 1; i++) {
                if (leftArray[m] < rightArray[n]) {
                    array[startIndex + i] = leftArray[m++];
                    if (m == leftArray.length) {
                        // 将rightArray剩下的元素全部复制到array对应位置中
                        array = branchArray2Array(array, startIndex + i + 1, rightArray, n);
                        break;
                    }
                } else {
                    array[startIndex + i] = rightArray[n++];
                    if (n == rightArray.length) {
                        // 将leftArray剩下的元素全部复制到array对应位置中
                        array = branchArray2Array(array, startIndex + i + 1, leftArray, m);
                        break;
                    }
                }
                // 不用考虑两个Integer.MAX_VALUE,因为最后两个数组分别剩下的元素必然是这两个哨兵元素
            }
            return array;
        }
    
        private static int[] createNonSentinelBranchArray(int[] array, int startIndex, int endIndex) {
            int length = endIndex - startIndex + 1;
            int[] branchArray = new int[length];
            for (int i = 0; i < length; i++) {
                branchArray[i] = array[startIndex + i];
            }
            return branchArray;
        }
    
        private static int[] branchArray2Array(int[] array, int targetIndex, int[] branchArray, int startIndex) {
            while (startIndex < branchArray.length) {
                array[targetIndex++] = branchArray[startIndex++];
            }
            return array;
        }
    
        // 由于一些情况(如内存空间不足),数据可以直接保存到硬盘中。而不是保存在内存的数组中
        private static void merge2Disk(int[] array, int startIndex, int middleIndex, int endIndex){
            int[] sentinelLeftArray = createSentinelArray(array, startIndex, middleIndex);
            int[] sentinelRightArray = createSentinelArray(array, middleIndex + 1, endIndex);
    
            for (int i = 0, m = 0, n = 0; i < endIndex - startIndex + 1; i++) {
                if (sentinelLeftArray[m] < sentinelRightArray[n]) {
                    Disk.store(sentinelLeftArray[m++]);
                } else {
                    Disk.store(sentinelRightArray[n++]);
                }
                // 不用考虑两个Integer.MAX_VALUE,因为最后两个数组分别剩下的元素必然是这两个哨兵元素
            }
        }
    
        // test_creatreSentinelArray
        public static void main(String[] args) {
            int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0};
            System.out.println(Arrays.toString(createSentinelArray(testArray, 0 , 2)));
        }
    }

补充:上述代码涉及的Disk类

之所以在归并排序中增加这个硬盘操作,是因为我做这道题想起来很久之前遇到的一道面试题。就是问如何用1G的空间,去排序8G的数据。答案就是采用归并排序(当时原理说出来了,但是白板没写好)。


package tech.jarry.learning.test.algorithms.mergesort;
    
    import java.util.ArrayList;
    import java.util.Iterator;
    import java.util.List;
    
    /**
     * 模仿真实硬盘,进行数据的存储与打印数据
     */
    public class Disk {
    
        private static List<Integer> diskIntegerInstance = new ArrayList<>();
    
        public static void store(int element) {
            diskIntegerInstance.add(element);
        }
    
        public static void printAll() {
            Iterator<Integer> integerIterator = diskIntegerInstance.iterator();
            while (integerIterator.hasNext()) {
                System.out.println(integerIterator.next());
            }
        }
    
    }

算法测试


    package tech.jarry.learning.test.algorithms.mergesort;
    
    import java.util.Arrays;
    
    public class MergeSortTest {
    
        public static void main(String[] args) {
            int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12};
            // 3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12
            // correct result: [0, 1, 2, 3, 4, 5, 5, 7, 9, 12, 18]
            int[] resultArray = MergeSort.mergeSort(testArray);
            System.out.println(Arrays.toString(resultArray));
        }
    }

结果输出

[0, 1, 2, 3, 4, 5, 5, 7, 9, 12, 18]

确定两数之和为固定值

这道题在leetcode中是存在的,之前的博客也有对应的解析。甚至leetcode还有求三数之和为确定值的题目。

算法实现


    package tech.jarry.learning.ch2.algorithms.twosum;
    
    import tech.jarry.learning.ch2.algorithms.mergesort.MergeSort;
    
    public class TwoSum {
    
        // 题目中只要求实现确定是否存在,而无需返回对应index。否则,需要注意剔除相同index的问题,并修改binarySearch的返回值
        public static boolean twoSum(int[] array, int target) {
            array = MergeSort.mergeSort(array);
    
            for (int i = 0; i < array.length; i++) {
                int branchTarget = target - array[i];
    
                // 二分查找的时间复杂度为lgn
                if (binarySearch(array, branchTarget)) {
                    return true;
                }
            }
            return false;
        }
    
        private static boolean binarySearch(int[] array, int target) {
            return binarySearch(array, target, 0, array.length - 1);
        }
    
        private static boolean binarySearch(int[] array, int target, int startIndex, int endIndex) {
            if (endIndex > startIndex) {
                int middleIndex = (endIndex + startIndex) / 2;
                if (target < array[middleIndex]) {
                    return binarySearch(array, target, startIndex, middleIndex);
                } else if (target > array[middleIndex]) {
                    return binarySearch(array, target, middleIndex + 1, endIndex);
                } else if (target == array[middleIndex]) {
                    return true;
                }
            }
    
            return false;
        }
    }

算法测试


    package tech.jarry.learning.test.algorithms.twosum;
    
    public class TwoSumTest {
    
        public static void main(String[] args) {
            int[] testArray = new int[] {3, 5, 7, 2, 4, 1, 5, 0, 9, 18 ,12};
            int target = 80;
            System.out.println(TwoSum.twoSum(testArray, target));
        }
    }

结果输出

false

由于书中的demo只要求输出存在与否,而leetcode类似的题目,则要求返回两个元素的index。感兴趣的朋友,可以看我之前写的有关leetcode求两数之和解法的博客。

总结

其实,这章算法的demo还是比较容易实现的。更多的是找找实现算法的感觉吧。

如果代码存在什么问题,或者你们存在什么疑惑,可以私信或@我。

愿与诸君共进步。


原文链接:https://www.cnblogs.com/Tiancheng-Duan/p/12343859.html
如有疑问请与原作者联系

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:TomCat控制台中文乱码及IDEA设置为UTF-8

下一篇:Java自学-Lambda 聚合操作