Flume基础学习
2020-02-13 16:04:05来源:博客园 阅读 ()
Flume基础学习
Flume是一款非常优秀的日志采集工具。支持多种形式的日志采集,作为apache的顶级开源项目,Flume再大数据方面具有广泛的应用
首先需要在Flume的解压目录中conf文件夹中将flume-env.sh.templete更改未flume.env.sh
并修改jdk的位置
Source
我们可以从Avro,NetCat。Http,TailDir。我们在Java开发中通常都是使用的log4j等日志工具进行日志按天存储,所以我们重点关注下tailDir Source
Taildir Source
在Flume1.7之前如果想要监控一个文件新增的内容,我们一般采用的source 为 exec tail,但是这会有一个弊端,就是当你的服务器宕机重启后,此时数据读取还是从头开始,这显然不是我们想看到的! 在Flume1.7 没有出来之前我们一般的解决思路为:当读取一条记录后,就把当前的记录的行号记录到一个文件中,宕机重启时,我们可以先从文件中获取到最后一次读取文件的行数,然后继续监控读取下去。保证数据不丢失、不重复。
在Flume1.7时新增了一个source 的类型为taildir,它可以监控一个目录下的多个文件,并且实现了实时读取记录保存的断点续传功能。
但是Flume1.7中如果文件重命名,那么会被当成新文件而被重新采集。
Channel
Memory Channel
Memory Channel把Event保存在内存队列中,该队列能保存的Event数量有最大值上限。由于Event数据都保存在内存中,Memory Channel有最好的性能,不过也有数据可能会丢失的风险,如果Flume崩溃或者重启,那么保存在Channel中的Event都会丢失。同时由于内存容量有限,当Event数量达到最大值或者内存达到容量上限,Memory Channel会有数据丢失。
File Channel
File Channel把Event保存在本地硬盘中,比Memory Channel提供更好的可靠性和可恢复性,不过要操作本地文件,性能要差一些。
Kafka Channel
Kafka Channel把Event保存在Kafka集群中,能提供比File Channel更好的性能和比Memory Channel更高的可靠性。
sink
Avro Sink
Avro Sink是Flume的分层收集机制的重要组成部分。 发送到此接收器的Flume事件变为Avro事件,并发送到配置指定的主机名/端口对。事件将从配置的通道中按照批量配置的批量大小取出。
Kafka Sink
Kafka Sink将会使用FlumeEvent header中的topic和key属性来将event发送给Kafka。如果FlumeEvent的header中有topic属性,那么此event将会发送到header的topic属性指定的topic中。如果FlumeEvent的header中有key属性,此属性将会被用来对此event中的数据指定分区,具有相同key的event将会被划分到相同的分区中,如果key属性null,那么event将会被发送到随机的分区中。
可以通过自定义拦截器来设置某个event的header中的key或者topic属性。
Flume拦截器
主要用于,过滤时间戳不合法和json数据不完整的日志,将错误日志、启动日志和事件日志区分开来,方便发往kafka的不同topic。配置参考后符例
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;
public class LogETLInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
String body = new String(event.getBody(), Charset.forName("UTF-8"));
// body为原始数据,newBody为处理后的数据,判断是否为display的数据类型
if (LogUtils.validateReportLog(body)) {
return event;
}
return null;
}
@Override
public List<Event> intercept(List<Event> events) {
ArrayList<Event> intercepts = new ArrayList<>();
// 遍历所有Event,将拦截器校验不合格的过滤掉
for (Event event : events) {
Event interceptEvent = intercept(event);
if (interceptEvent != null){
intercepts.add(interceptEvent);
}
}
return intercepts;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder {
public Interceptor build() {
return new LogETLInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
启动命令
flume-ng agent
--conf-file /opt/module/flume/conf/file-flume-kafka.conf
--name a1
-Dflume.root.logger=INFO,console
第一个参数为自己编写的配置文件路径
第二个参数为flume agent的名称。即配置文件中定义的名称
第三个参数为在flume中打印Info级别日志,并打印到控制台
大数据中的数据处理流程例子
从上例图可以看出。我们从日志到转化未HDFS中可以消费的数据一般还要经历两个Flume阶段
- 日志文件-->Flume-->Kafka
- kafka-->Flume-->HDFS
两个阶段的处理配置
第一阶段的配置参考
a1.sources=r1
a1.channels=c1 c2
a1.sinks=k1 k2
# configure source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /opt/module/flume/log_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /tmp/logs/app.+
a1.sources.r1.fileHeader = true
a1.sources.r1.channels = c1 c2
#interceptor
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.flume.interceptor.LogETLInterceptor$Builder
# selector
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = logType
a1.sources.r1.selector.mapping.start = c1
a1.sources.r1.selector.mapping.event = c2
# configure channel
a1.channels.c1.type = memory
a1.channels.c1.capacity=10000
a1.channels.c1.byteCapacityBufferPercentage=20
a1.channels.c2.type = memory
a1.channels.c2.capacity=10000
a1.channels.c2.byteCapacityBufferPercentage=20
# configure sink
# start-sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = topic_start
a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k1.kafka.flumeBatchSize = 2000
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.channel = c1
# event-sink
a1.sinks.k2.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k2.kafka.topic = topic_event
a1.sinks.k2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k2.kafka.flumeBatchSize = 2000
a1.sinks.k2.kafka.producer.acks = 1
a1.sinks.k2.channel = c2
第二阶段的配置参考
## 组件
a1.sources=r1 r2
a1.channels=c1 c2
a1.sinks=k1 k2
## source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r1.kafka.zookeeperConnect = hadoop102:2181,hadoop103:2181,hadoop104:2181
a1.sources.r1.kafka.topics=topic_start
## source2
a1.sources.r2.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r2.batchSize = 5000
a1.sources.r2.batchDurationMillis = 2000
a1.sources.r2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r2.kafka.zookeeperConnect = hadoop102:2181,hadoop103:2181,hadoop104:2181
a1.sources.r2.kafka.topics=topic_event
## channel1
a1.channels.c1.type=memory
a1.channels.c1.capacity=100000
a1.channels.c1.transactionCapacity=10000
## channel2
a1.channels.c2.type=memory
a1.channels.c2.capacity=100000
a1.channels.c2.transactionCapacity=10000
## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_start/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = logstart-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 30
a1.sinks.k1.hdfs.roundUnit = second
##sink2
a1.sinks.k2.type = hdfs
a1.sinks.k2.hdfs.path = /origin_data/gmall/log/topic_event/%Y-%m-%d
a1.sinks.k2.hdfs.filePrefix = logevent-
a1.sinks.k2.hdfs.round = true
a1.sinks.k2.hdfs.roundValue = 30
a1.sinks.k2.hdfs.roundUnit = second
## 不要产生大量小文件
a1.sinks.k1.hdfs.rollInterval = 30
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k2.hdfs.rollInterval = 30
a1.sinks.k2.hdfs.rollSize = 0
a1.sinks.k2.hdfs.rollCount = 0
## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k2.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = lzop
a1.sinks.k2.hdfs.codeC = lzop
## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1
a1.sources.r2.channels = c2
a1.sinks.k2.channel= c2
本文由博客一文多发平台 OpenWrite 发布!
原文链接:https://www.cnblogs.com/zhendiao/p/12302309.html
如有疑问请与原作者联系
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
上一篇:写二进制,姿势一定要骚,省字段,省带宽,提效率...
下一篇:Spring资源访问
- 04.Java基础语法 2020-06-11
- 学习Java 8 Stream Api (4) - Stream 终端操作之 collect 2020-06-11
- java学习之第一天 2020-06-11
- Java学习之第二天 2020-06-11
- Spring WebFlux 学习笔记 - (一) 前传:学习Java 8 Stream Ap 2020-06-11
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash