Flume基础学习

2020-02-13 16:04:05来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

Flume基础学习

Flume是一款非常优秀的日志采集工具。支持多种形式的日志采集,作为apache的顶级开源项目,Flume再大数据方面具有广泛的应用

首先需要在Flume的解压目录中conf文件夹中将flume-env.sh.templete更改未flume.env.sh

并修改jdk的位置

Source

我们可以从Avro,NetCat。Http,TailDir。我们在Java开发中通常都是使用的log4j等日志工具进行日志按天存储,所以我们重点关注下tailDir Source

Taildir Source

在Flume1.7之前如果想要监控一个文件新增的内容,我们一般采用的source 为 exec tail,但是这会有一个弊端,就是当你的服务器宕机重启后,此时数据读取还是从头开始,这显然不是我们想看到的! 在Flume1.7 没有出来之前我们一般的解决思路为:当读取一条记录后,就把当前的记录的行号记录到一个文件中,宕机重启时,我们可以先从文件中获取到最后一次读取文件的行数,然后继续监控读取下去。保证数据不丢失、不重复。

在Flume1.7时新增了一个source 的类型为taildir,它可以监控一个目录下的多个文件,并且实现了实时读取记录保存的断点续传功能。

但是Flume1.7中如果文件重命名,那么会被当成新文件而被重新采集。

Channel

Memory Channel

Memory Channel把Event保存在内存队列中,该队列能保存的Event数量有最大值上限。由于Event数据都保存在内存中,Memory Channel有最好的性能,不过也有数据可能会丢失的风险,如果Flume崩溃或者重启,那么保存在Channel中的Event都会丢失。同时由于内存容量有限,当Event数量达到最大值或者内存达到容量上限,Memory Channel会有数据丢失。

File Channel

File Channel把Event保存在本地硬盘中,比Memory Channel提供更好的可靠性和可恢复性,不过要操作本地文件,性能要差一些。

Kafka Channel

Kafka Channel把Event保存在Kafka集群中,能提供比File Channel更好的性能和比Memory Channel更高的可靠性。

sink

Avro Sink

Avro Sink是Flume的分层收集机制的重要组成部分。 发送到此接收器的Flume事件变为Avro事件,并发送到配置指定的主机名/端口对。事件将从配置的通道中按照批量配置的批量大小取出。

Kafka Sink

Kafka Sink将会使用FlumeEvent header中的topic和key属性来将event发送给Kafka。如果FlumeEvent的header中有topic属性,那么此event将会发送到header的topic属性指定的topic中。如果FlumeEvent的header中有key属性,此属性将会被用来对此event中的数据指定分区,具有相同key的event将会被划分到相同的分区中,如果key属性null,那么event将会被发送到随机的分区中。

可以通过自定义拦截器来设置某个event的header中的key或者topic属性。

Flume拦截器

主要用于,过滤时间戳不合法和json数据不完整的日志,将错误日志、启动日志和事件日志区分开来,方便发往kafka的不同topic。配置参考后符例

import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;

public class LogETLInterceptor implements Interceptor {

    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {

        String body = new String(event.getBody(), Charset.forName("UTF-8"));

        // body为原始数据,newBody为处理后的数据,判断是否为display的数据类型
        if (LogUtils.validateReportLog(body)) {
            return event;
        }

        return null;
    }

    @Override
    public List<Event> intercept(List<Event> events) {

        ArrayList<Event> intercepts = new ArrayList<>();

        // 遍历所有Event,将拦截器校验不合格的过滤掉
        for (Event event : events) {
            
            Event interceptEvent = intercept(event);

            if (interceptEvent != null){
                intercepts.add(interceptEvent);
            }
        }

        return intercepts;
    }

    @Override
    public void close() {

    }

    public static class Builder implements Interceptor.Builder {

        public Interceptor build() {
            return new LogETLInterceptor();
        }


        @Override
        public void configure(Context context) {

        }
    }
}

启动命令

flume-ng agent

--conf-file /opt/module/flume/conf/file-flume-kafka.conf

--name a1
-Dflume.root.logger=INFO,console

第一个参数为自己编写的配置文件路径

第二个参数为flume agent的名称。即配置文件中定义的名称

第三个参数为在flume中打印Info级别日志,并打印到控制台

大数据中的数据处理流程例子

file

从上例图可以看出。我们从日志到转化未HDFS中可以消费的数据一般还要经历两个Flume阶段

  • 日志文件-->Flume-->Kafka
  • kafka-->Flume-->HDFS

两个阶段的处理配置

第一阶段的配置参考

a1.sources=r1
a1.channels=c1 c2 
a1.sinks=k1 k2 

# configure source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /opt/module/flume/log_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /tmp/logs/app.+
a1.sources.r1.fileHeader = true
a1.sources.r1.channels = c1 c2

#interceptor
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.flume.interceptor.LogETLInterceptor$Builder

# selector
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = logType
a1.sources.r1.selector.mapping.start = c1
a1.sources.r1.selector.mapping.event = c2

# configure channel
a1.channels.c1.type = memory
a1.channels.c1.capacity=10000
a1.channels.c1.byteCapacityBufferPercentage=20

a1.channels.c2.type = memory
a1.channels.c2.capacity=10000
a1.channels.c2.byteCapacityBufferPercentage=20

# configure sink
# start-sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = topic_start
a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k1.kafka.flumeBatchSize = 2000
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.channel = c1

# event-sink
a1.sinks.k2.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k2.kafka.topic = topic_event
a1.sinks.k2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k2.kafka.flumeBatchSize = 2000
a1.sinks.k2.kafka.producer.acks = 1
a1.sinks.k2.channel = c2

第二阶段的配置参考

## 组件
a1.sources=r1 r2
a1.channels=c1 c2
a1.sinks=k1 k2

## source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r1.kafka.zookeeperConnect = hadoop102:2181,hadoop103:2181,hadoop104:2181
a1.sources.r1.kafka.topics=topic_start

## source2
a1.sources.r2.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r2.batchSize = 5000
a1.sources.r2.batchDurationMillis = 2000
a1.sources.r2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r2.kafka.zookeeperConnect = hadoop102:2181,hadoop103:2181,hadoop104:2181
a1.sources.r2.kafka.topics=topic_event

## channel1
a1.channels.c1.type=memory
a1.channels.c1.capacity=100000
a1.channels.c1.transactionCapacity=10000

## channel2
a1.channels.c2.type=memory
a1.channels.c2.capacity=100000
a1.channels.c2.transactionCapacity=10000

## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_start/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = logstart-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 30
a1.sinks.k1.hdfs.roundUnit = second

##sink2
a1.sinks.k2.type = hdfs
a1.sinks.k2.hdfs.path = /origin_data/gmall/log/topic_event/%Y-%m-%d
a1.sinks.k2.hdfs.filePrefix = logevent-
a1.sinks.k2.hdfs.round = true
a1.sinks.k2.hdfs.roundValue = 30
a1.sinks.k2.hdfs.roundUnit = second

## 不要产生大量小文件
a1.sinks.k1.hdfs.rollInterval = 30
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0

a1.sinks.k2.hdfs.rollInterval = 30
a1.sinks.k2.hdfs.rollSize = 0
a1.sinks.k2.hdfs.rollCount = 0

## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream 
a1.sinks.k2.hdfs.fileType = CompressedStream 

a1.sinks.k1.hdfs.codeC = lzop
a1.sinks.k2.hdfs.codeC = lzop

## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1

a1.sources.r2.channels = c2
a1.sinks.k2.channel= c2

本文由博客一文多发平台 OpenWrite 发布!


原文链接:https://www.cnblogs.com/zhendiao/p/12302309.html
如有疑问请与原作者联系

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:写二进制,姿势一定要骚,省字段,省带宽,提效率...

下一篇:Spring资源访问