分布式全文搜索引擎ElasticSearch—超详细
2019-12-22 16:03:58来源:博客园 阅读 ()
1 ElasticSearch
1.1 ES的概念和特点
ES:全文检索的框架,专门做搜索,支持分布式、集群。封装的Lucene。
特点:
- 原生的Lucene使用的不足,优化了Lucene的调用方式
- 高可用的分布式集群,处理PB级别的数据
- 目的是通过简单的restful API来隐藏Lucene的复杂性,从而使全文检索变得简单,达到“开瓶即饮”的效果
Lucene:全文检索,api比较麻烦,操作全文检索的最底层技术。
核心:创建索引,搜索索引
1.2 ES的对手
Solr和ES的区别:
(1) Solr重量级,支持很多种类型操作,支持分布式,它里面有很多功能,但是在实时领域上没有ES好。
(2) ES轻量级,支持json的操作格式,在实时搜索领域里面做得不错,如果想使用其他的功能,需要额外安装插件。
2 ElasticSearch安装及使用说明
2.1 安装ES
ES服务只依赖于JDK,推荐使用JDK1.7+。
(1)下载ES安装包:ES官方下载地址
(2)运行ES (双击bin目录下的elasticsearch.bat)
(3)验证是否运行成功,访问:http://localhost:9200/
如果看到如下信息,则说明ES集群已经启动并且正常运行。
2.2 ES交互方式客户端
(1)基于RESTful API
ES和所有客户端的交互都是使用JSON格式的数据.
其他所有程序语言都可以使用RESTful API,通过9200端口的与ES进行通信,在开发测试阶段,你可以使用你喜欢的WEB客户端, curl命令以及火狐的POSTER插件方式和ES通信。
Curl命令方式:
默认windows下不支持curl命令,在资料中有curl的工具及简单使用说明。
火狐的POSTER插件界面:
类似于Firebug,在火狐的“扩展”中搜索“POSTER”,并安装改扩展工具。
使用POSTER模拟请求的效果
(2)Java API
ES为Java用户提供了两种内置客户端:
节点客户端(node client):
节点客户端以无数据节点(none data node)身份加入集群,换言之,它自己不存储任何数据,但是它知道数据在集群中的具体位置,并且能够直接转发请求到对应的节点上。
传输客户端(Transport client):
这个更轻量的传输客户端能够发送请求到远程集群。它自己不加入集群,只是简单转发请求给集群中的节点。
两个Java客户端都通过9300端口与集群交互,使用ES传输协议(ES Transport Protocol)。集群中的节点
之间也通过9300端口进行通信。如果此端口未开放,你的节点将不能组成集群。
注意:
Java客户端所在的ES版本必须与集群中其他节点一致,否则,它们可能互相无法识别。
2.3 辅助管理工具Kibana5
(1)Kibana5.2.2下载地址:Kibana官方下载地址
(2)解压并编辑config/kibana.yml,设置elasticsearch.url的值为已启动的ES
(3)启动Kibana5 (在bin目录下双击kibana.bat)
(4)验证是否成功,默认访问地址:http://localhost:5601
2.4 head工具入门 + postman
(1)进入head文件中,输入cmd,打开控制台,输入npm install进行安装。
(2)安装完成,输入命令npm run start启动服务
(3)配置允许跨域访问,在elasticsearch/config/elasticsearch.yml文件末尾加上
http.cors.enabled: true
http.cors.allow-origin: “*”
(4)重启elasticsearch服务,访问http://localhost:9100
3 ES的基本操作
3.1 ES的CRUD
#新增 PUT crm/employee/1 { "name":"xxxx", "age":18 } #查询 GET crm/employee/1 #修改 POST crm/employee/1 { "name":"yyyy", "age":28 } #删除 DELETE crm/employee/1 #没有指定id 字段生成id POST crm/employee { "name":"yyyy", "age":28 } # AW8iLW-mRN4d1HhhqMMJ GET crm/employee/AW8iLW-mRN4d1HhhqMMJ GET _search
3.2 ES的特殊写法
# 查询所有 GET _search #漂亮格式 GET crm/employee/AW8iLW-mRN4d1HhhqMMJ?pretty #指定返回的列 GET crm/employee/AW8iLW-mRN4d1HhhqMMJ?_source=name,age #不要元数据 只返回具体数据 GET crm/employee/AW8iLW-mRN4d1HhhqMMJ/_source
3.3 局部修改
#修改 --覆盖以前json POST crm/employee/AW8iLW-mRN4d1HhhqMMJ { "name":"yyyy888" } #局部更新 POST crm/employee/AW8iLW-mRN4d1HhhqMMJ/_update { "doc":{ "name":"baocheng" } }
3.4 批量操作
POST _bulk { "delete": { "_index": "xlj", "_type": "department", "_id": "123" }} { "create": { "_index": "xlj", "_type": "book", "_id": "123" }} { "title": "我发行的第一本书" } { "index": { "_index": "itsource", "_type": "book" }} { "title": "我发行的第二本书" } # 普通查询: GET crm/department/id # 批量查询: GET xlj/book/_mget { "ids" : [ "123", "AH8ht-oSqTn8hjKcHo2i" ] }
3.5 查询条件
# 从第0条开始查询3条student信息 GET crm/student/_search?size=3 # 从第2条开始查询2条student信息 GET crm/student/_search?from=2&size=2 # 表示查询age=15的人 GET crm/student/_search?q=age:15 # 查询3条student的信息,他们的age范围到10到20 GET crm/student/_search?size=3&q=age[10 TO 20]
如果上面的查询涉及条件比较多,就不适合使用
4 DSL查询与过滤
4.1 什么是DSL
由ES提供丰富且灵活的查询语言叫做DSL查询(Query DSL),它允许你构建更加复杂、强大的查询。
DSL(Domain Specific Language特定领域语言)以JSON请求体的形式出现。
DSL分成两部分:
DSL查询
DSL过滤
4.2 DSL过滤与DSL查询在性能上的区别
(1)过滤结果可以缓存并应用到后续请求。
?(2)查询语句同时匹配文档,计算相关性,所以更耗时,且不缓存。
(3)过滤语句可有效地配合查询语句完成文档过滤。
总之在原则上,使用DSL查询做全文本搜索或其他需要进行相关性评分的场景,其它全用DSL过滤。
4.2.1 DSL查询
GET crm/student/_search { "query": { "match_all": {} }, "from": 0, "size": 3, "_source": ["name", "age"], "sort": [{"age": "asc"}] }
4.2.2 DSL过滤
#DSL过滤 --> name = 'tangtang' --支持缓存 #select * from student where name=tangtang and age = 500 GET crm/student/_search { "query": { "bool": { "must": [ {"match": { "name": "tangtang" }} ], "filter": { "term":{"age":500} } } }, "from": 0, "size": 3, "_source": ["name", "age"], "sort": [{"age": "asc"}] } #select * from student where age = 500 and name != 'tangtang' GET crm/student/_search { "query": { "bool": { "must_not": [ {"match": { "name": "tangtang" }} ], "filter": { "term":{"age":500} } } }, "from": 0, "size": 3, "_source": ["name", "age"], "sort": [{"age": "asc"}] }
5 分词器
什么叫分词:把一段话按照一定规则拆分开
为什么要分词:便于检索
分词器放入ES:
解压ik分词器 -->在es 在plugins目录 -->创建一个IK文件夹 -->把ik插件拷贝到ik文件下面
测试ES怎么使用分词:
POST _analyze { "analyzer":"ik_smart", "text":"中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首" }
7 ES集群
7.1 为什么需要集群
- 解决单点故障问题
- 解决高并发问题
- 解决海量数据问题
7.2 ES集群的相关概念
分片::存储内容,主分片和从分片
node:节点,有很多类型的节点
节点属性的配置:
四种组合配置方式:
(1)node.master: true node.data: true
这种组合表示这个节点即有成为主节点的资格,又存储数据。
如果某个节点被选举成为了真正的主节点,那么他还要存储数据,这样对于这个节点的压力就比较大了。ElasticSearch默认每个节点都是这样的配置,在测试环境下这样做没问题。实际工作中建议不要这样设置,因为这样相当于主节点和数据节点的角色混合到一块了。
(2)node.master: false node.data: true
这种组合表示这个节点没有成为主节点的资格,也就不参与选举,只会存储数据。
这个节点我们称为data(数据)节点。在集群中需要单独设置几个这样的节点负责存储数据,后期提供存储和查询服务。
(3)node.master: true node.data: false
这种组合表示这个节点不会存储数据,有成为主节点的资格,可以参与选举,有可能成为真正的主节点,这个节点我们称为master节点。
(4)node.master: false node.data: false
这种组合表示这个节点即不会成为主节点,也不会存储数据,这个节点的意义是作为一个client(客户端)节点,主要是针对海量请求的时候可以进行负载均衡。
7.3 ES集群理解
7.3.1 单node环境
- 单node环境下,创建一个index,有3个primary shard,3个replica shard
- 集群status是yellow
- 这个时候,只会将3个primary shard分配到仅有的一个node上去,另外3个replica shard是无法分配的
- 集群可以正常工作,但是一旦出现节点宕机,数据全部丢失,而且集群不可用,无法承接任何请求
7.3.2 2个node环境
- replica shard分配:3个primary shard,3个replica shard,2 node
- primary —> replica同步
- 读请求:primary/replica
7.4 搭建ES集群
搭建三个节点的集群
(1) 拷贝三个ES 分别取名为node1 node2 node3
(2) 修改配置
修改内存配置 xms xmx
配置 elasticsearch.yml
# 统一的集群名 cluster.name: my-ealsticsearch # 当前节点名 node.name: node-1 # 对外暴露端口使外网访问 network.host: 127.0.0.1 # 对外暴露端口 http.port: 9201 #集群间通讯端口号 transport.tcp.port: 9301 #集群的ip集合,可指定端口,默认为9300 discovery.zen.ping.unicast.hosts: [“127.0.0.1:9301”,”127.0.0.1:9302”,”127.0.0.1:9303”]
(3) 配置跨域
(4) 启动 node1 node2 node3
(5) 启动head
创建索引,指定分片(如果没有分配从分片,磁盘占用率太高,可以设置:cluster.routing.allocation.disk.threshold_enabled: false)
8 Java API
8.1 什么是JavaAPI
ES对Java提供一套操作索引库的工具包,即Java API。所有的ES操作都使用Client对象执行。
ES的Maven引入:
<dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>transport</artifactId> <version>5.2.2</version> </dependency> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-api</artifactId> <version>2.7</version> </dependency> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-core</artifactId> <version>2.7</version> </dependency>
8.2 测试代码
import org.elasticsearch.action.bulk.BulkRequestBuilder; import org.elasticsearch.action.bulk.BulkResponse; import org.elasticsearch.action.index.IndexRequest; import org.elasticsearch.action.index.IndexRequestBuilder; import org.elasticsearch.action.search.SearchRequestBuilder; import org.elasticsearch.action.search.SearchResponse; import org.elasticsearch.action.update.UpdateRequest; import org.elasticsearch.client.transport.TransportClient; import org.elasticsearch.common.settings.Settings; import org.elasticsearch.common.transport.InetSocketTransportAddress; import org.elasticsearch.index.query.BoolQueryBuilder; import org.elasticsearch.index.query.QueryBuilder; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.search.SearchHit; import org.elasticsearch.search.SearchHits; import org.elasticsearch.search.sort.SortOrder; import org.elasticsearch.transport.client.PreBuiltTransportClient; import org.junit.Test; import java.net.InetAddress; import java.util.HashMap; import java.util.List; import java.util.Map; public class EsTest { /** * 连接es服务方法 嗅探方式 */ private TransportClient getClient() throws Exception { Settings settings = Settings.builder() .put("client.transport.sniff", true).build(); TransportClient client = new PreBuiltTransportClient(settings). addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300)); return client; } /** * 新增 */ @Test public void testAdd() throws Exception { TransportClient client = getClient(); IndexRequestBuilder builder = client.prepareIndex("crm", "user", "1"); Map map = new HashMap(); map.put("name", "james"); map.put("age", 35); System.out.println(builder.setSource(map).get()); client.close(); } /** * 查询 */ @Test public void testGet() throws Exception { TransportClient client = getClient(); System.out.println(client.prepareGet("crm", "user", "1").get().getSource()); client.close(); } /** * 修改 */ @Test public void testUpdate() throws Exception { TransportClient client = getClient(); IndexRequest indexRequest = new IndexRequest("crm", "user", "1"); Map map = new HashMap(); map.put("name", "kobe"); map.put("age", 18); //不存在就新增,存在就更新 UpdateRequest upsert = new UpdateRequest("crm", "user", "1").doc(map).upsert(indexRequest); client.update(upsert).get(); client.close(); } /** * 删除 */ @Test public void testDelete() throws Exception { TransportClient client = getClient(); client.prepareDelete("crm","user","1").get(); client.close(); } /** * 批量操作 */ @Test public void testBulk() throws Exception { TransportClient client = getClient(); BulkRequestBuilder bulk = client.prepareBulk(); for (int i = 1; i < 51; i++) { Map map = new HashMap(); map.put("name", "xx" + i); map.put("age", i); bulk.add(client.prepareIndex("crm", "user", "" + i).setSource(map)); } BulkResponse response = bulk.get(); if (response.hasFailures()) { System.out.println("插入失败!"); } client.close(); } /** * DSL过滤(分页,过滤,排序) */ @Test public void testDsl() throws Exception { TransportClient client = getClient(); //得到builder SearchRequestBuilder builder = client.prepareSearch("crm").setTypes("user"); //得到boolQuery对象 BoolQueryBuilder boolQuery = QueryBuilders.boolQuery(); //得到must List<QueryBuilder> must = boolQuery.must(); must.add(QueryBuilders.matchAllQuery()); //添加filter过滤器 boolQuery.filter(QueryBuilders.rangeQuery("age").gte(18).lte(48)); builder.setQuery(boolQuery); //添加分页 builder.setFrom(0); builder.setSize(10); //设置排序 builder.addSort("age", SortOrder.ASC); //设置查询字段 builder.setFetchSource(new String[]{"name","age"}, null); //取值 SearchResponse searchResponse = builder.get(); //得到查询内容 SearchHits hits = searchResponse.getHits(); //得到命中数据,返回数组 SearchHit[] hitsHits = hits.getHits(); //循环数组,打印获取值 for (SearchHit hitsHit : hitsHits) { System.out.println(hitsHit.getSource()); } client.close(); } }
原文链接:https://www.cnblogs.com/wings-xh/p/12080240.html
如有疑问请与原作者联系
标签:
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有
- 聊聊微服务架构及分布式事务解决方案! 2020-06-10
- 作为一个面试官,我想问问你Redis分布式锁怎么搞? 2020-06-10
- 分布式锁没那么难,手把手教你实现 Redis 分布锁!|保姆级教 2020-06-08
- 【从单体架构到分布式架构】(二)请求增多,单点变集群(1) 2020-06-07
- 高吞吐量的分布式发布订阅消息系统Kafka之Producer源码分析 2020-05-30
IDC资讯: 主机资讯 注册资讯 托管资讯 vps资讯 网站建设
网站运营: 建站经验 策划盈利 搜索优化 网站推广 免费资源
网络编程: Asp.Net编程 Asp编程 Php编程 Xml编程 Access Mssql Mysql 其它
服务器技术: Web服务器 Ftp服务器 Mail服务器 Dns服务器 安全防护
软件技巧: 其它软件 Word Excel Powerpoint Ghost Vista QQ空间 QQ FlashGet 迅雷
网页制作: FrontPages Dreamweaver Javascript css photoshop fireworks Flash