深入理解HashMap和CurrentHashMap

2018-07-25 13:06:02来源:博客园 阅读 ()

新老客户大回馈,云服务器低至5折

原文链接:https://segmentfault.com/a/1190000015726870

前言

Map 这样的 Key Value 在软件开发中是非常经典的结构,常用于在内存中存放数据。

本篇主要想讨论 ConcurrentHashMap 这样一个并发容器,在正式开始之前我觉得有必要谈谈 HashMap,没有它就不会有后面的 ConcurrentHashMap。

HashMap

众所周知 HashMap 底层是基于 数组 + 链表 组成的,不过在 jdk1.7 和 1.8 中具体实现稍有不同。

Base 1.7

1.7 中的数据结构图:

先来看看 1.7 中的实现。

这是 HashMap 中比较核心的几个成员变量;看看分别是什么意思?

  1. 初始化桶大小,因为底层是数组,所以这是数组默认的大小。
  2. 桶最大值。
  3. 默认的负载因子(0.75)
  4. table 真正存放数据的数组。
  5. Map 存放数量的大小。
  6. 桶大小,可在初始化时显式指定。
  7. 负载因子,可在初始化时显式指定。

重点解释下负载因子:

由于给定的 HashMap 的容量大小是固定的,比如默认初始化:

 1     public HashMap() {
 2         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 3     }
 4 
 5     public HashMap(int initialCapacity, float loadFactor) {
 6         if (initialCapacity < 0)
 7             throw new IllegalArgumentException("Illegal initial capacity: " +
 8                                                initialCapacity);
 9         if (initialCapacity > MAXIMUM_CAPACITY)
10             initialCapacity = MAXIMUM_CAPACITY;
11         if (loadFactor <= 0 || Float.isNaN(loadFactor))
12             throw new IllegalArgumentException("Illegal load factor: " +
13                                                loadFactor);
14 
15         this.loadFactor = loadFactor;
16         threshold = initialCapacity;
17         init();
18     }

给定的默认容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量达到了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。

因此通常建议能提前预估 HashMap 的大小最好,尽量的减少扩容带来的性能损耗。

根据代码可以看到其实真正存放数据的是

transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

这个数组,那么它又是如何定义的呢?

2

Entry 是 HashMap 中的一个内部类,从他的成员变量很容易看出:

  • key 就是写入时的键。
  • value 自然就是值。
  • 开始的时候就提到 HashMap 是由数组和链表组成,所以这个 next 就是用于实现链表结构。
  • hash 存放的是当前 key 的 hashcode。

知晓了基本结构,那来看看其中重要的写入、获取函数:

put 方法

    public V put(K key, V value) {
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key);
        int i = indexFor(hash, table.length);
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }

        modCount++;
        addEntry(hash, key, value, i);
        return null;
    }
  • 判断当前数组是否需要初始化。
  • 如果 key 为空,则 put 一个空值进去。
  • 根据 key 计算出 hashcode。
  • 根据计算出的 hashcode 定位出所在桶。
  • 如果桶是一个链表则需要遍历判断里面的 hashcode、key 是否和传入 key 相等,如果相等则进行覆盖,并返回原来的值。
  • 如果桶是空的,说明当前位置没有数据存入;新增一个 Entry 对象写入当前位置。
    void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
    }
    
    void createEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        size++;
    }

当调用 addEntry 写入 Entry 时需要判断是否需要扩容。

如果需要就进行两倍扩充,并将当前的 key 重新 hash 并定位。

而在 createEntry 中会将当前位置的桶传入到新建的桶中,如果当前桶有值就会在位置形成链表。

get 方法

再来看看 get 函数:

    public V get(Object key) {
        if (key == null)
            return getForNullKey();
        Entry<K,V> entry = getEntry(key);

        return null == entry ? null : entry.getValue();
    }
    
    final Entry<K,V> getEntry(Object key) {
        if (size == 0) {
            return null;
        }

        int hash = (key == null) ? 0 : hash(key);
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }
  • 首先也是根据 key 计算出 hashcode,然后定位到具体的桶中。
  • 判断该位置是否为链表。
  • 不是链表就根据 key、key 的 hashcode 是否相等来返回值。
  • 为链表则需要遍历直到 key 及 hashcode 相等时候就返回值。
  • 啥都没取到就直接返回 null 。

Base 1.8

不知道 1.7 的实现大家看出需要优化的点没有?

其实一个很明显的地方就是:

当 Hash 冲突严重时,在桶上形成的链表会变的越来越长,这样在查询时的效率就会越来越低;时间复杂度为 O(N)

因此 1.8 中重点优化了这个查询效率。

1.8 HashMap 结构图:

3

先来看看几个核心的成员变量:

 1     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 2 
 3     /**
 4      * The maximum capacity, used if a higher value is implicitly specified
 5      * by either of the constructors with arguments.
 6      * MUST be a power of two <= 1<<30.
 7      */
 8     static final int MAXIMUM_CAPACITY = 1 << 30;
 9 
10     /**
11      * The load factor used when none specified in constructor.
12      */
13     static final float DEFAULT_LOAD_FACTOR = 0.75f;
14 
15     static final int TREEIFY_THRESHOLD = 8;
16     
17     transient Node<K,V>[] table;
18 
19     /**
20      * Holds cached entrySet(). Note that AbstractMap fields are used
21      * for keySet() and values().
22      */
23     transient Set<Map.Entry<K,V>> entrySet;
24 
25     /**
26      * The number of key-value mappings contained in this map.
27      */
28     transient int size;

和 1.7 大体上都差不多,还是有几个重要的区别:

  • TREEIFY_THRESHOLD 用于判断是否需要将链表转换为红黑树的阈值。
  • HashEntry 修改为 Node。

Node 的核心组成其实也是和 1.7 中的 HashEntry 一样,存放的都是 key value hashcode next 等数据。

再来看看核心方法。

put 方法

4

看似要比 1.7 的复杂,我们一步步拆解:

  1. 判断当前桶是否为空,空的就需要初始化(resize 中会判断是否进行初始化)。
  2. 根据当前 key 的 hashcode 定位到具体的桶中并判断是否为空,为空表明没有 Hash 冲突就直接在当前位置创建一个新桶即可。
  3. 如果当前桶有值( Hash 冲突),那么就要比较当前桶中的 key、key 的 hashcode 与写入的 key 是否相等,相等就赋值给 e,在第 8 步的时候会统一进行赋值及返回。
  4. 如果当前桶为红黑树,那就要按照红黑树的方式写入数据。
  5. 如果是个链表,就需要将当前的 key、value 封装成一个新节点写入到当前桶的后面(形成链表)。
  6. 接着判断当前链表的大小是否大于预设的阈值,大于时就要转换为红黑树。
  7. 如果在遍历过程中找到 key 相同时直接退出遍历。
  8. 如果 e != null 就相当于存在相同的 key,那就需要将值覆盖。
  9. 最后判断是否需要进行扩容。

get 方法

 1     public V get(Object key) {
 2         Node<K,V> e;
 3         return (e = getNode(hash(key), key)) == null ? null : e.value;
 4     }
 5 
 6     final Node<K,V> getNode(int hash, Object key) {
 7         Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
 8         if ((tab = table) != null && (n = tab.length) > 0 &&
 9             (first = tab[(n - 1) & hash]) != null) {
10             if (first.hash == hash && // always check first node
11                 ((k = first.key) == key || (key != null && key.equals(k))))
12                 return first;
13             if ((e = first.next) != null) {
14                 if (first instanceof TreeNode)
15                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
16                 do {
17                     if (e.hash == hash &&
18                         ((k = e.key) == key || (key != null && key.equals(k))))
19                         return e;
20                 } while ((e = e.next) != null);
21             }
22         }
23         return null;
24     }

get 方法看起来就要简单许多了。

  • 首先将 key hash 之后取得所定位的桶。
  • 如果桶为空则直接返回 null 。
  • 否则判断桶的第一个位置(有可能是链表、红黑树)的 key 是否为查询的 key,是就直接返回 value。
  • 如果第一个不匹配,则判断它的下一个是红黑树还是链表。
  • 红黑树就按照树的查找方式返回值。
  • 不然就按照链表的方式遍历匹配返回值。

从这两个核心方法(get/put)可以看出 1.8 中对大链表做了优化,修改为红黑树之后查询效率直接提高到了 O(logn)

但是 HashMap 原有的问题也都存在,比如在并发场景下使用时容易出现死循环。

1 final HashMap<String, String> map = new HashMap<String, String>();
2 for (int i = 0; i < 1000; i++) {
3     new Thread(new Runnable() {
4         @Override
5         public void run() {
6             map.put(UUID.randomUUID().toString(), "");
7         }
8     }).start();
9 }

但是为什么呢?简单分析下。

看过上文的还记得在 HashMap 扩容的时候会调用 resize() 方法,就是这里的并发操作容易在一个桶上形成环形链表;这样当获取一个不存在的 key 时,计算出的 index 正好是环形链表的下标就会出现死循环。

如下图:

5

6

遍历方式

还有一个值得注意的是 HashMap 的遍历方式,通常有以下几种:

 1 Iterator<Map.Entry<String, Integer>> entryIterator = map.entrySet().iterator();
 2         while (entryIterator.hasNext()) {
 3             Map.Entry<String, Integer> next = entryIterator.next();
 4             System.out.println("key=" + next.getKey() + " value=" + next.getValue());
 5         }
 6         
 7 Iterator<String> iterator = map.keySet().iterator();
 8         while (iterator.hasNext()){
 9             String key = iterator.next();
10             System.out.println("key=" + key + " value=" + map.get(key));
11 
12         }

强烈建议使用第一种 EntrySet 进行遍历。

第一种可以把 key value 同时取出,第二种还得需要通过 key 取一次 value,效率较低。

简单总结下 HashMap:无论是 1.7 还是 1.8 其实都能看出 JDK 没有对它做任何的同步操作,所以并发会出问题,甚至出现死循环导致系统不可用。

因此 JDK 推出了专项专用的 ConcurrentHashMap ,该类位于 java.util.concurrent 包下,专门用于解决并发问题。

坚持看到这里的朋友算是已经把 ConcurrentHashMap 的基础已经打牢了,下面正式开始分析。

ConcurrentHashMap

ConcurrentHashMap 同样也分为 1.7 、1.8 版,两者在实现上略有不同。

Base 1.7

先来看看 1.7 的实现,下面是他的结构图:

7

如图所示,是由 Segment 数组、HashEntry 组成,和 HashMap 一样,仍然是数组加链表。

它的核心成员变量:

1  /**
2      * Segment 数组,存放数据时首先需要定位到具体的 Segment 中。
3      */
4     final Segment<K,V>[] segments;
5 
6     transient Set<K> keySet;
7     transient Set<Map.Entry<K,V>> entrySet;

Segment 是 ConcurrentHashMap 的一个内部类,主要的组成如下:

 1     static final class Segment<K,V> extends ReentrantLock implements Serializable {
 2 
 3         private static final long serialVersionUID = 2249069246763182397L;
 4         
 5         // 和 HashMap 中的 HashEntry 作用一样,真正存放数据的桶
 6         transient volatile HashEntry<K,V>[] table;
 7 
 8         transient int count;
 9 
10         transient int modCount;
11 
12         transient int threshold;
13 
14         final float loadFactor;
15         
16     }

看看其中 HashEntry 的组成:

8

和 HashMap 非常类似,唯一的区别就是其中的核心数据如 value ,以及链表都是 volatile 修饰的,保证了获取时的可见性。

原理上来说:ConcurrentHashMap 采用了分段锁技术,其中 Segment 继承于 ReentrantLock。不会像 HashTable 那样不管是 put 还是 get 操作都需要做同步处理,理论上 ConcurrentHashMap 支持 CurrencyLevel (Segment 数组数量)的线程并发。每当一个线程占用锁访问一个 Segment 时,不会影响到其他的 Segment。

下面也来看看核心的 put get 方法。

put 方法

 1     public V put(K key, V value) {
 2         Segment<K,V> s;
 3         if (value == null)
 4             throw new NullPointerException();
 5         int hash = hash(key);
 6         int j = (hash >>> segmentShift) & segmentMask;
 7         if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
 8              (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
 9             s = ensureSegment(j);
10         return s.put(key, hash, value, false);
11     }

首先是通过 key 定位到 Segment,之后在对应的 Segment 中进行具体的 put。

 1         final V put(K key, int hash, V value, boolean onlyIfAbsent) {
 2             HashEntry<K,V> node = tryLock() ? null :
 3                 scanAndLockForPut(key, hash, value);
 4             V oldValue;
 5             try {
 6                 HashEntry<K,V>[] tab = table;
 7                 int index = (tab.length - 1) & hash;
 8                 HashEntry<K,V> first = entryAt(tab, index);
 9                 for (HashEntry<K,V> e = first;;) {
10                     if (e != null) {
11                         K k;
12                         if ((k = e.key) == key ||
13                             (e.hash == hash && key.equals(k))) {
14                             oldValue = e.value;
15                             if (!onlyIfAbsent) {
16                                 e.value = value;
17                                 ++modCount;
18                             }
19                             break;
20                         }
21                         e = e.next;
22                     }
23                     else {
24                         if (node != null)
25                             node.setNext(first);
26                         else
27                             node = new HashEntry<K,V>(hash, key, value, first);
28                         int c = count + 1;
29                         if (c > threshold && tab.length < MAXIMUM_CAPACITY)
30                             rehash(node);
31                         else
32                             setEntryAt(tab, index, node);
33                         ++modCount;
34                         count = c;
35                         oldValue = null;
36                         break;
37                     }
38                 }
39             } finally {
40                 unlock();
41             }
42             return oldValue;
43         }

虽然 HashEntry 中的 value 是用 volatile 关键词修饰的,但是并不能保证并发的原子性,所以 put 操作时仍然需要加锁处理。

首先第一步的时候会尝试获取锁,如果获取失败肯定就有其他线程存在竞争,则利用 scanAndLockForPut() 自旋获取锁。

9

  1. 尝试自旋获取锁。
  2. 如果重试的次数达到了 MAX_SCAN_RETRIES 则改为阻塞锁获取,保证能获取成功。

10

再结合图看看 put 的流程。

  1. 将当前 Segment 中的 table 通过 key 的 hashcode 定位到 HashEntry。
  2. 遍历该 HashEntry,如果不为空则判断传入的 key 和当前遍历的 key 是否相等,相等则覆盖旧的 value。
  3. 不为空则需要新建一个 HashEntry 并加入到 Segment 中,同时会先判断是否需要扩容。
  4. 最后会解除在 1 中所获取当前 Segment 的锁。

get 方法

 1     public V get(Object key) {
 2         Segment<K,V> s; // manually integrate access methods to reduce overhead
 3         HashEntry<K,V>[] tab;
 4         int h = hash(key);
 5         long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
 6         if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
 7             (tab = s.table) != null) {
 8             for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
 9                      (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
10                  e != null; e = e.next) {
11                 K k;
12                 if ((k = e.key) == key || (e.hash == h && key.equals(k)))
13                     return e.value;
14             }
15         }
16         return null;
17     }

get 逻辑比较简单:

只需要将 Key 通过 Hash 之后定位到具体的 Segment ,再通过一次 Hash 定位到具体的元素上。

由于 HashEntry 中的 value 属性是用 volatile 关键词修饰的,保证了内存可见性,所以每次获取时都是最新值。

ConcurrentHashMap 的 get 方法是非常高效的,因为整个过程都不需要加锁

Base 1.8

1.7 已经解决了并发问题,并且能支持 N 个 Segment 这么多次数的并发,但依然存在 HashMap 在 1.7 版本中的问题。

那就是查询遍历链表效率太低。

因此 1.8 做了一些数据结构上的调整。

首先来看下底层的组成结构:

11

看起来是不是和 1.8 HashMap 结构类似?

其中抛弃了原有的 Segment 分段锁,而采用了 CAS + synchronized 来保证并发安全性。

12

也将 1.7 中存放数据的 HashEntry 改为 Node,但作用都是相同的。

其中的 val next 都用了 volatile 修饰,保证了可见性。

put 方法

重点来看看 put 函数:

13

  • 根据 key 计算出 hashcode 。
  • 判断是否需要进行初始化。
  • f 即为当前 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功。
  • 如果当前位置的 hashcode == MOVED == -1,则需要进行扩容。
  • 如果都不满足,则利用 synchronized 锁写入数据。
  • 如果数量大于 TREEIFY_THRESHOLD 则要转换为红黑树。

get 方法

13

  • 根据计算出来的 hashcode 寻址,如果就在桶上那么直接返回值。
  • 如果是红黑树那就按照树的方式获取值。
  • 就不满足那就按照链表的方式遍历获取值。
1.8 在 1.7 的数据结构上做了大的改动,采用红黑树之后可以保证查询效率(O(logn)),甚至取消了 ReentrantLock 改为了 synchronized,这样可以看出在新版的 JDK 中对 synchronized 优化是很到位的。

总结

看完了整个 HashMap 和 ConcurrentHashMap 在 1.7 和 1.8 中不同的实现方式相信大家对他们的理解应该会更加到位。

其实这块也是面试的重点内容,通常的套路是:

  1. 谈谈你理解的 HashMap,讲讲其中的 get put 过程。
  2. 1.8 做了什么优化?
  3. 是线程安全的嘛?
  4. 不安全会导致哪些问题?
  5. 如何解决?有没有线程安全的并发容器?
  6. ConcurrentHashMap 是如何实现的? 1.7、1.8 实现有何不同?为什么这么做?

这一串问题相信大家仔细看完都能怼回面试官。

除了面试会问到之外平时的应用其实也蛮多,像之前谈到的 Guava 中 Cache 的实现就是利用 ConcurrentHashMap 的思想。

同时也能学习 JDK 作者大牛们的优化思路以及并发解决方案。

号外

最近在总结一些 Java 相关的知识点,感兴趣的朋友可以一起维护。

地址: https://github.com/crossoverJie/Java-Interview

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点,本站所提供的摄影照片,插画,设计作品,如需使用,请与原作者联系,版权归原作者所有

上一篇:在java项目中使用 Lombok 及可能问题

下一篇:java之接口文档规范