Python: scikit-image 图像的基本操作

2018-07-20    来源:open-open

容器云强势上线!快速搭建集群,上万Linux镜像随意使用

这个用例说明Python 的图像基本运算

import numpy as np
from skimage import data
import matplotlib.pyplot as plt

camera = data.camera()
# 将图像前面10行的值赋为0
camera[:10] = 0
# 寻找图像中像素值小于87的像素点
mask = camera < 87
# 将找到的点赋值为255
camera[mask] = 255
# 建立索引
inds_x = np.arange(len(camera))
inds_y = (4 * inds_x) % len(camera)
# 对应索引的像素赋值为0
camera[inds_x, inds_y] = 0

# 获取图像的行数(高),列数(宽)
l_x, l_y = camera.shape[0], camera.shape[1]
# 建立网格坐标索引
X, Y = np.ogrid[:l_x, :l_y]
# 生成圆形的网格坐标
outer_disk_mask = (X - l_x / 2)**2 + (Y - l_y / 2)**2 > (l_x / 2)**2
# 对网格坐标赋0
camera[outer_disk_mask] = 0

# 建立figure的尺寸比例
plt.figure(figsize=(4, 4))
# 显示图像
plt.imshow(camera, cmap='gray', interpolation='nearest')
# 关掉图像的坐标
plt.axis('off')
plt.show()

参考来源: http://scikit-image.org/docs/dev/auto_examples/

标签:

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点!
本站所提供的图片等素材,版权归原作者所有,如需使用,请与原作者联系。

上一篇: iOS字符串NSString常用方法

下一篇:微信H5的开头css部分