kafka 源码分析3: Producer
2018-07-02 来源:importnew
Producer
Producer是生产者的接口定义
常用的方法有
public Future<RecordMetadata> send(ProducerRecord<K, V> record); public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback); public void flush(); public void close();
KafkaProducer是异步的,调用send方法后,kafka并没有立即发送给broker,而是先放在buffer缓冲池中就立即返回,后台的IO线程来负责把消息记录转换成请求发送给kafka集群。
buffer大小通过batch.size
配置置顶,producer维护每个partition的没有发送记录的buffer。
默认情况下不满的buffer也是可以发送的,可以通过linger.ms
来设置等待时间减少请求数量,跟TCP中的Nagle算法是一个道理。
producer的总的buffer大小可以通过buffer.memory
控制,如果生产太快来不及发送超过了这个值则会block住,block的最大时间通过max.block.ms
,超时后会抛出TimeoutException
key.serialize
和value.serializer
控制如何把Java对象转换成byte数组传输给kafka集群。
acks
控制producer什么时候认为写成功了,数量是需要leader获得的ack的数量。acks=0时producer把消息记录放到socket buffer中就认为成功了;acks=1时,需要leader成功写到本地就返回,但是不需要等待follower的ack。acks=all是,需要所有的in-sync replica都返回ack才认为是发送成功,这样只要有一个in-sync replica存活消息就没有丢。
Partitioner负责决定将哪一个消息写入到哪一个partition, 有一些场景希望特定的key发送到特定的partition时可以指定自己实现的Paritioner。
默认的Partitioner是随机负载均衡的。
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { int nextValue = nextValue(topic); List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (!availablePartitions.isEmpty()) { int part = Utils.toPositive(nextValue) % availablePartitions.size(); return availablePartitions.get(part).partition(); } else { // no partitions are available, give a non-available partition return Utils.toPositive(nextValue) % numPartitions; } } else { // hash the keyBytes to choose a partition return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } } private int nextValue(String topic) { AtomicInteger counter = topicCounterMap.get(topic); if (null == counter) { counter = new AtomicInteger(ThreadLocalRandom.current().nextInt()); AtomicInteger currentCounter = topicCounterMap.putIfAbsent(topic, counter); if (currentCounter != null) { counter = currentCounter; } } return counter.getAndIncrement(); }
ProducerRecord
ProducerRecord包含了发送给Broker需要的内容
class ProducerRecord<K, V> { private final String topic; private final Integer partition; private final Headers headers; private final K key; private final V value; private final Long timestamp; }
KafkaProducer构建过程
// 创建partitioner this.partitioner = config.getConfiguredInstance(ProducerConfig.PARTITIONER_CLASS_CONFIG, Partitioner.class); long retryBackoffMs = config.getLong(ProducerConfig.RETRY_BACKOFF_MS_CONFIG); // 配置序列化 if (keySerializer == null) { this.keySerializer = ensureExtended(config.getConfiguredInstance(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, Serializer.class)); this.keySerializer.configure(config.originals(), true); } else { config.ignore(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG); this.keySerializer = ensureExtended(keySerializer); } if (valueSerializer == null) { this.valueSerializer = ensureExtended(config.getConfiguredInstance(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, Serializer.class)); this.valueSerializer.configure(config.originals(), false); } else { config.ignore(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG); this.valueSerializer = ensureExtended(valueSerializer); } // load interceptors and make sure they get clientId userProvidedConfigs.put(ProducerConfig.CLIENT_ID_CONFIG, clientId); List<ProducerInterceptor<K, V>> interceptorList = (List) (new ProducerConfig(userProvidedConfigs, false)).getConfiguredInstances(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, ProducerInterceptor.class); this.interceptors = interceptorList.isEmpty() ? null : new ProducerInterceptors<>(interceptorList); ClusterResourceListeners clusterResourceListeners = configureClusterResourceListeners(keySerializer, valueSerializer, interceptorList, reporters); this.metadata = new Metadata(retryBackoffMs, config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG), true, true, clusterResourceListeners); this.maxRequestSize = config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG); this.totalMemorySize = config.getLong(ProducerConfig.BUFFER_MEMORY_CONFIG); this.compressionType = CompressionType.forName(config.getString(ProducerConfig.COMPRESSION_TYPE_CONFIG)); this.maxBlockTimeMs = config.getLong(ProducerConfig.MAX_BLOCK_MS_CONFIG); this.requestTimeoutMs = config.getInt(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG); this.transactionManager = configureTransactionState(config); int retries = configureRetries(config, transactionManager != null); int maxInflightRequests = configureInflightRequests(config, transactionManager != null); short acks = configureAcks(config, transactionManager != null); this.apiVersions = new ApiVersions(); // RecordAccumulator中实现了累加和等待的逻辑 this.accumulator = new RecordAccumulator(config.getInt(ProducerConfig.BATCH_SIZE_CONFIG), this.totalMemorySize, this.compressionType, config.getLong(ProducerConfig.LINGER_MS_CONFIG), retryBackoffMs, metrics, time, apiVersions, transactionManager); List<InetSocketAddress> addresses = ClientUtils.parseAndValidateAddresses(config.getList(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG)); this.metadata.update(Cluster.bootstrap(addresses), Collections.<String>emptySet(), time.milliseconds()); ChannelBuilder channelBuilder = ClientUtils.createChannelBuilder(config); Sensor throttleTimeSensor = Sender.throttleTimeSensor(metrics); // 高层的网络处理,封装了send、poll等接口 NetworkClient client = new NetworkClient( new Selector(config.getLong(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG), this.metrics, time, "producer", channelBuilder), this.metadata, clientId, maxInflightRequests, config.getLong(ProducerConfig.RECONNECT_BACKOFF_MS_CONFIG), config.getLong(ProducerConfig.RECONNECT_BACKOFF_MAX_MS_CONFIG), config.getInt(ProducerConfig.SEND_BUFFER_CONFIG), config.getInt(ProducerConfig.RECEIVE_BUFFER_CONFIG), this.requestTimeoutMs, time, true, apiVersions, throttleTimeSensor); // 负责实际发送请求给kafka集群的后台线程 this.sender = new Sender(client, this.metadata, this.accumulator, maxInflightRequests == 1, config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG), acks, retries, this.metrics, Time.SYSTEM, this.requestTimeoutMs, config.getLong(ProducerConfig.RETRY_BACKOFF_MS_CONFIG), this.transactionManager, apiVersions); String ioThreadName = NETWORK_THREAD_PREFIX + (clientId.length() > 0 ? " | " + clientId : ""); this.ioThread = new KafkaThread(ioThreadName, this.sender, true); this.ioThread.start(); this.errors = this.metrics.sensor("errors"); config.logUnused(); AppInfoParser.registerAppInfo(JMX_PREFIX, clientId); log.debug("Kafka producer started");
KafkaProducer#send
入口在doSend(interceptedRecord, callback);
// 获取cluster信息, 来得到对应topic的cluster节点信息 ClusterAndWaitTime clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), maxBlockTimeMs); long remainingWaitMs = Math.max(0, maxBlockTimeMs - clusterAndWaitTime.waitedOnMetadataMs); Cluster cluster = clusterAndWaitTime.cluster; byte[] serializedKey; try { serializedKey = keySerializer.serialize(record.topic(), record.headers(), record.key()); } catch (ClassCastException cce) { throw new SerializationException("Can't convert key of class " + record.key().getClass().getName() + " to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() + " specified in key.serializer"); } byte[] serializedValue; try { serializedValue = valueSerializer.serialize(record.topic(), record.headers(), record.value()); } catch (ClassCastException cce) { throw new SerializationException("Can't convert value of class " + record.value().getClass().getName() + " to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() + " specified in value.serializer"); } // 找到对应的partition int partition = partition(record, serializedKey, serializedValue, cluster); tp = new TopicPartition(record.topic(), partition); setReadOnly(record.headers()); Header[] headers = record.headers().toArray(); int serializedSize = AbstractRecords.estimateSizeInBytesUpperBound(apiVersions.maxUsableProduceMagic(), compressionType, serializedKey, serializedValue, headers); ensureValidRecordSize(serializedSize); long timestamp = record.timestamp() == null ? time.milliseconds() : record.timestamp(); log.trace("Sending record {} with callback {} to topic {} partition {}", record, callback, record.topic(), partition); // producer callback will make sure to call both 'callback' and interceptor callback Callback interceptCallback = this.interceptors == null ? callback : new InterceptorCallback<>(callback, this.interceptors, tp); if (transactionManager != null && transactionManager.isTransactional()) transactionManager.maybeAddPartitionToTransaction(tp); // 追加到RecordAccumulator中 RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey, serializedValue, headers, interceptCallback, remainingWaitMs); if (result.batchIsFull || result.newBatchCreated) { log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition); this.sender.wakeup(); } return result.future;
RecordAccumulator
使用双端队列Deque保存ProducerBatch
// We keep track of the number of appending thread to make sure we do not miss batches in // abortIncompleteBatches(). appendsInProgress.incrementAndGet(); ByteBuffer buffer = null; if (headers == null) headers = Record.EMPTY_HEADERS; try { // check if we have an in-progress batch // 获取或创建对应TopicPartition的队列 Deque<ProducerBatch> dq = getOrCreateDeque(tp); synchronized (dq) { if (closed) throw new IllegalStateException("Cannot send after the producer is closed."); // 如果最后一个节点能加入就加入返回 RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq); if (appendResult != null) return appendResult; } // 加入不了就要新申请一个 // we don't have an in-progress record batch try to allocate a new batch byte maxUsableMagic = apiVersions.maxUsableProduceMagic(); int size = Math.max(this.batchSize, AbstractRecords.estimateSizeInBytesUpperBound(maxUsableMagic, compression, key, value, headers)); log.trace("Allocating a new {} byte message buffer for topic {} partition {}", size, tp.topic(), tp.partition()); buffer = free.allocate(size, maxTimeToBlock); synchronized (dq) { // Need to check if producer is closed again after grabbing the dequeue lock. if (closed) throw new IllegalStateException("Cannot send after the producer is closed."); // 这两个同步块间可能有其他线程已经创建了下一个Batch RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq); if (appendResult != null) { // Somebody else found us a batch, return the one we waited for! Hopefully this doesn't happen often... return appendResult; } MemoryRecordsBuilder recordsBuilder = recordsBuilder(buffer, maxUsableMagic); ProducerBatch batch = new ProducerBatch(tp, recordsBuilder, time.milliseconds()); FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, headers, callback, time.milliseconds())); dq.addLast(batch); incomplete.add(batch); // Don't deallocate this buffer in the finally block as it's being used in the record batch buffer = null; return new RecordAppendResult(future, dq.size() > 1 || batch.isFull(), true); } } finally { if (buffer != null) free.deallocate(buffer); appendsInProgress.decrementAndGet(); }
Sender
Sender是一个后台线程, 不考虑事务的话,只分为senProducerDat和poll, poll中等待处理返回结果
void run(long now) { if (transactionManager != null) { if (!transactionManager.isTransactional()) { // this is an idempotent producer, so make sure we have a producer id maybeWaitForProducerId(); } else if (transactionManager.hasInFlightRequest() || maybeSendTransactionalRequest(now)) { // as long as there are outstanding transactional requests, we simply wait for them to return client.poll(retryBackoffMs, now); return; } // do not continue sending if the transaction manager is in a failed state or if there // is no producer id (for the idempotent case). if (transactionManager.hasFatalError() || !transactionManager.hasProducerId()) { RuntimeException lastError = transactionManager.lastError(); if (lastError != null) maybeAbortBatches(lastError); client.poll(retryBackoffMs, now); return; } else if (transactionManager.hasAbortableError()) { accumulator.abortUndrainedBatches(transactionManager.lastError()); } } long pollTimeout = sendProducerData(now); client.poll(pollTimeout, now); }
``` private long sendProducerData(long now) { // Cluster cluster = metadata.fetch(); // 获取准备好发送的数据,包括各个TopicParition的队列,其中队列长度大于1、第一个batch满了、没有缓存buffer空间了、正在关闭、在调用flush都会刷新待发送数据。 // get the list of partitions with data ready to send RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now); // if there are any partitions whose leaders are not known yet, force metadata update if (!result.unknownLeaderTopics.isEmpty()) { // The set of topics with unknown leader contains topics with leader election pending as well as // topics which may have expired. Add the topic again to metadata to ensure it is included // and request metadata update, since there are messages to send to the topic. for (String topic : result.unknownLeaderTopics) this.metadata.add(topic); this.metadata.requestUpdate(); } // remove any nodes we aren't ready to send to Iterator<Node> iter = result.readyNodes.iterator(); long notReadyTimeout = Long.MAX_VALUE; while (iter.hasNext()) { Node node = iter.next(); if (!this.client.ready(node, now)) { iter.remove(); notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now)); } } // 从队列中取出 // create produce requests Map<Integer, List<ProducerBatch>> batches = this.accumulator.drain(cluster, result.readyNodes, this.maxRequestSize, now); if (guaranteeMessageOrder) { // Mute all the partitions drained for (List<ProducerBatch> batchList : batches.values()) { for (ProducerBatch batch : batchList) this.accumulator.mutePartition(batch.topicPartition); } } List<ProducerBatch> expiredBatches = this.accumulator.expiredBatches(this.requestTimeout, now); boolean needsTransactionStateReset = false; // Reset the producer id if an expired batch has previously been sent to the broker. Also update the metrics // for expired batches. see the documentation of @TransactionState.resetProducerId to understand why // we need to reset the producer id here. if (!expiredBatches.isEmpty()) log.trace("Expired {} batches in accumulator", expiredBatches.size()); for (ProducerBatch expiredBatch : expiredBatches) { failBatch(expiredBatch, -1, NO_TIMESTAMP, expiredBatch.timeoutException()); if (transactionManager != null && expiredBatch.inRetry()) { needsTransactionStateReset = true; } this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount); } if (needsTransactionStateReset) { transactionManager.resetProducerId(); return 0; } sensors.updateProduceRequestMetrics(batches); // If we have any nodes that are ready to send + have sendable data, poll with 0 timeout so this can immediately // loop and try sending more data. Otherwise, the timeout is determined by nodes that have partitions with data // that isn't yet sendable (e.g. lingering, backing off). Note that this specifically does not include nodes // with sendable data that aren't ready to send since they would cause busy looping. long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout); if (!result.readyNodes.isEmpty()) { log.trace("Nodes with data ready to send: {}", result.readyNodes); // if some partitions are already ready to be sent, the select time would be 0; // otherwise if some partition already has some data accumulated but not ready yet, // the select time will be the time difference between now and its linger expiry time; // otherwise the select time will be the time difference between now and the metadata expiry time; pollTimeout = 0; } sendProduceRequests(batches, now); return pollTimeout; }
标签: 网络
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点!
本站所提供的图片等素材,版权归原作者所有,如需使用,请与原作者联系。