分布式缓存能否作为NoSQL数据库?

2019-02-26    来源:多智时代

容器云强势上线!快速搭建集群,上万Linux镜像随意使用

(作者

对于文档、对象图、键值对这样的非关系型数据类型,NoSQL数据库为它们提供了另一种可选的数据存储方式。分布式缓存能被用作NoSQL数据库吗?Ehcache的Greg Luck撰文描述了分布式缓存与NoSQL数据库的相似性。InfoQ就此采访了他,讨论了该方案的利弊之处。

分布式缓存通常会把数据放在内存里,用于降低延时。NoSQL数据库是没有R的DBMS(即没有关系的数据库管理系统),一般也缺乏对事务和其他高级特性的支持。对于不支持关系的系统,表关系的关联是SQL里最麻烦的部分,这也正是NoSQL这个名字的起源。

其中一种NoSQL数据库是键值存储。典型的例子包括Dynamo、Oracle NoSQL Database和Redis。缓存也是键值存储,因此说这两者是相关的。很多缓存实现能被配置为可持久化的,之所以很多时候不那么做,是因为缓存是要提升性能而不是做持久化。而NoSQL数据库则与此相反,它是用来做持久化的。

持久化缓存也可当作键值NoSQL数据库来使用。NoSQL也提到了Big Data,通常是指比能放进一个单独的RDBMS节点的量要大的数据,一般从几TB到几PB。

分布式缓存通常用于降低事务性数据的延时,这些数据开始时并不大,但慢慢就会往Big Data这个方向发展。由于缓存将数据保存在内存里,这提高了存储的成本,而且需要限制数据的大小。如果依赖于堆存储,每个服务器节点可能只有可怜的2GB。如果依赖于分布式缓存,Ehcache还提供了堆外存储,每台服务器可以存储几百GB数据,可以用作TB级别的缓存。

持久化、分布式的缓存可以适用于一些NoSQL的场景。NoSQL数据库也可以应对一些缓存的场景,只是延时稍高而已。

它们都想提供优于RDBMS的TPS和可扩展性。为此,它们都在功能上做了简化,抛开了那些麻烦的问题,比如表关联、存储过程和ACID事务。

虽然Java缓存领域里有JSR 107,它为Spring和Java EE程序员提供了一套标准的缓存API,但是比起标准化接口,它们都更倾向于使用私有接口。

它们都采用对客户端透明的方式对数据进行分区,做向外扩展。非Java产品向上扩展做得也很好。拥有Terracotta BigMemory,我们在Java平台上的向上扩展方面也做得很特别。最后,两者都可以部署在常见的硬件和操作系统上,这让它们都能理想地运行于云端。

NoSQL和RDBMS通常使用的是磁盘。磁盘是机械设备,延时很厉害,因为寻道时间是磁头移动到正确的磁道的时间,读写时间依赖于磁盘的RPM。NoSQL尝试优化磁盘的使用,例如,仅仅在磁头当前位置追加日志,偶尔才刷新到磁盘上。相反,缓存主要都把数据放内存里。

NoSQL和RDBMS的客户端很薄(想想Thrift或JDBC),只是在网络中传输数据,而像Ehcache这样的缓存使用进程内存储和远程存储,因此常用请求在本地就能被成功处理。在分布式缓存上下文中,每个应用程序服务器的进程内存储中都会缓存热点数据,增加服务器数量并不会增加网络或后端的负载。

RDBMS专注于成为通用的SOR(System of Record)。NoSQ希望成为某类特定数据类型的SOR,比如键值对、文档、稀疏表(宽表)或图。缓存着眼于性能,一般会与RDBMS或NoSQL数据库结合使用,数据类型就是SOR。往往缓存中会存储Web服务调用的结果,业务对象的计算结果,这个结果可能需要成百SOR调用才能得到。

像Ehcache这样的缓存部分运行在应用程序的操作系统进程里,部分运行在网络那头自己机器的进程里。但也不是全部分布式缓存都这样:memcache就是一个例子,所有的数据都跨网络存储。

这还得从先前的问题说起,要将分布式缓存用于你现有的应用程序,通常只需要很小的工作量,而NoSQL则需要做很多事,还有大的架构变更。

因此适用分布式缓存的第一类应用程序是现有系统,特别是有以下需要的:

  • 由于使用量或负载激增而需要向外扩展
  • 为达到SLA而需要有更低的延时
  • 为了将大型机这样的昂贵基础设施的使用减到最低
  • 减少Web服务调用而带来的费用
  • 应对极端负载高峰(比如黑色星期五一样的促销)

缓存,置于内存之中,在大小上有制约,它们的技术局限受限于有多少内存给它们使用(下面还会具体展开说明)。

缓存,就算它提供持久化功能,也未必算的上作为SOR的上选。缓存故意回避了备份到磁盘和从中还原的复杂功能,尽管也有简单的。RDMBS在过去30年里开发了丰富的备份、还原、迁移、报表和ETL特性。而NoSQL则介于两者之间。

缓存提供了改变数据与访问数据的编程API。NoSQL和RDBMS则提供了工具,可以执行脚本化语言(比如SQL、UnSQL和Thrift)。

但关键一点是要记住缓存并不想成为你的SOR。它能轻松地与你的RDBMS和睦相处,为此它并不需要RDBMS所有用的复杂功能。

速度大幅快于RDBMS,依赖于部署拓扑的NoSQL,还有数据访问模式,分布式缓存可以位于这三者之间的任意位置。那些需要更低延时的人可以将缓存作为NoSQL的一个补充,就像现在对待RDBMS那样。

稍有不同的是,在你想将RDBMS扩展到多个节点时,经常会难于扩展,或者影响编程契约,或者受制于

在不久的将来,云计算一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以收藏云计算,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!

标签: 大数据 服务器 脚本 数据库 网络 云计算

版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点!
本站所提供的图片等素材,版权归原作者所有,如需使用,请与原作者联系。

上一篇:基于Docker开发的PaaS平台 DINP

下一篇:苹果iCloud服务用户现已达到1.25亿人