健康云上如何进行大数据的挖掘与分析
2019-02-26 来源:多智时代
本文旨在介绍区域医疗信息系统建设和大数据分析技术的发展,并总结出健康云上的大数据分析面临的特殊挑战和提出初步解决方案。
一、健康云的兴起
随着我国经济持续稳定的发展和现代科技的日益进步,越来越多的人们开始重点自身健康。在满足日常工作和生活的需求之外,规律的健身休闲活动、年度体检、健康饮食已经成为越来越普遍的想象。与此同时,随着国家新医改政策的颁布和实施,与健康直接相关的医疗行业也正在迅猛发展。这里重点介绍一下我国医疗行业IT解决方案市场呈现的发展趋势:
1、 渐增的多样医疗数据源:医疗数据的生成和采集已经不再仅局限于医院这个单一环境。它还可以来自于体检中心、社区/乡镇卫生院、私人诊所、实验室检验中心、急救中心、家庭,随着物联网(IoT, Internet of Things)相关技术的发展,我们甚至可以说:个人医疗数据可以采自于任何适合的地方。
2、 医疗数据的高度集中化:区域医疗信息系统(RHIS, Regional Health Information System)将逐步取代现有的基于医院的信息系统。并且,它将更广泛的覆盖一个特定区域内的所有医院、社区、急救中心、体检中心、实验室检验中心、社会保险机构等。居民个人来自各个数据源的全周期医疗数据将集中保存在统一的区域数据中心中。医疗数据将不再只是某家医院独享的资源,而是与整个区域中的所有医疗机构共享,甚至可以与更上层的大区域级、国家级信息系统进行数据交换。
3、 从医疗信息系统到医疗信息服务:区域医疗信息系统的逐步建立将使先进的医疗信息服务的设计和开发变得更加便捷。例如:流行病分析、公共卫生事件预测、临床决策支持、慢性病管理、个性化的健康照护计划、日常卫生保健管理等。其原因是因为这些信息服务必须建立在数据集中化的基础上。这些服务的受众群体将是整个社会。
正是如上所述的发展趋势使得“健康云(Healthcare Cloud)”的建立才会成为可能。试想一下:在不久的将来,我们可以通过手机统一查询在不同医院的就诊记录、生化检验结果、处方和收费清单;慢性病患者在家中可以自测血压、血糖等指标并通过无线网络上传到区域医疗数据中心,医生也可以远程分析患者自测数据判断其病情发展;大量的知识和规则从海量数据中自动提取出来,并用来协助社区及基层卫生机构的初级医生对患者作出准确的诊断和用药决策;各个社区居民的医疗数据将会自动汇总,并进行统计分析,用以进行流行病、慢性病的自动筛查、趋势分析和爆发预警,为公共卫生机构制定防治干预计划和行动提供有力的依据和参考;患者的症状、生命体征、检验检测结果、医疗影像、诊断、处方、医嘱、手术、住院和账单等全周期数据将会进行全方位的跟踪和分析,为新药开发、新治疗方案的设计提供支持。上述这些事例都将是我们通过健康云可以逐步实现的。
当然,健康云不是一天就可以建成的,这将是个阶段性的工程。除了国家政策和地方支持等外围因素之外,云计算和大数据技术将会起决定性作用。从构建底层云基础架构、云存储方案,到中层的云计算平台,最后到上层的云应用服务设计和开发,至少需要3~5年的长期规划。其中,大数据分析部分更是纵向贯穿于云基础架构、云平台和云服务三层,需要整体设计和逐步实施。基于现有技术和需求,在本文中,我们暂且把健康云简化定义为:基于区域医疗信息系统的医疗信息服务,并重点1~3年的市场需求。
在不久的将来,云计算一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以收藏云计算,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!
标签: 大数据 大数据分析 大数据分析技术 大数据技术 数据分析 网络 云服务 云计算 云计算和大数据 云计算平台
版权申明:本站文章部分自网络,如有侵权,请联系:west999com@outlook.com
特别注意:本站所有转载文章言论不代表本站观点!
本站所提供的图片等素材,版权归原作者所有,如需使用,请与原作者联系。